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Software is pervasive in our everyday lives. Unfortunately, software bugs are still regularly causing
tremendous harm.1I work towards a future where critical software bugs are extremely rare. Of key
importance to achieve this goal are Formal Methods, mathematically rigorous techniques to prevent
dangerous bugs in software. Despite decades of research with substantial breakthroughs, Formal Methods
have not yet been widely adopted. One major reason is that Formal Methods tools are often themselves
incorrect, unstable, slow, or not user-friendly. My career goal is to develop Formal Methods Engineering
(FME)—a dedicated discipline for making Formal Methods more correct, stable, performant, and
usable. FME entails three major research challenges: (C1) Making SMT solvers—the foundation of many
Formal Methods tools—much more solid, stable and performant, (C2) Unifying testing and verification,
and (C3) Specification Engineering. Similar to software engineering for software, FME transforms the
use of Formal Methods from an ad hoc activity to a structured approach.

I am a researcher in software engineering and programming languages. My research yields widely
applicable, practical, and ambitious methodologies. Through my Ph.D. research, I made a significant
contribution towards developing Formal Methods Engineering. I focused on solidifying Satisfiability
Modulo Theory (SMT) solvers—one of the most powerful classes of Formal Methods. SMT solvers
are foundational for software research and industry and are almost always at the heart of their client
applications which are often security/safety-critical [2, 4, 9, 8]. Moreover, SMT has the potential to serve
as an intermediate representation for judging the reasoning abilities of LLMs. Incorrect, incomplete, or
slow SMT solvers can have severe undesirable effects. Hence, it is crucial that SMT solvers be correct and
performant. Before my Ph.D. research body, there was uncertainty about SMT solvers: Unfounded trust,
false assumptions, and many hidden soundness bugs—the most severe category of bugs. My research
found 1,800+ bugs in SMT solvers, leading to 1,300+ bug fixes and 350+ soundness bug fixes. Moreover,
I validated SMT solvers to ensure that they no longer have bugs on simple formulas.

Ph.D. Research: Solidifying Modern SMT Solvers

My Ph.D. research was guided by three consecutive research questions: (1) Do SMT solvers even have
critical bugs? (2) How to effectively test SMT solvers? (3) Have we tested enough?

Do SMT solvers even have critical bugs? As of early 2019, there was little reason to doubt the
correctness of SMT solvers. GitHub issues of leading SMT solvers contained no soundness bugs. In the
SMT solver competition, they were also rare. Moreover, research papers only found very few bugs in
unstable solvers. This was indicating that besides a few known issues, SMT solvers should be trusted. How
to put this trust in SMT solvers to the test? There are two key obstacles: (O1) fabricating complex formulas
to thoroughly stress-test the SMT solvers and (O2) validating the SMT solver’s result. O1 is challenging
because SMT solvers have large codebases and an expressive input format, while O2 is challenging because
of the trade-off between formula complexity and control over its satisfiability. I invented Semantic Fusion,
an approach to solve both challenges [12]. There is a large collection of benchmarks (400k), complex,
real-world SMT formulas on which SMT solvers are well-exercised. Semantic Fusion fabricates new
formulas from these benchmarks on which SMT solvers are not well-exercised, hence potentially returning
incorrect results. To create these new formulas, we fuse formula pairs of known satisfiability in many
different ways, resulting in a large space of formulas closely resembling the original benchmarks but
not quite. The key here is that we fabricate the new formulas so that we also know their satisfiability by
construction. We first combine the formulas, resulting in a conjunction/disjunction. Then, we slice off a
piece of each formula and combine the two formulas in an interesting manner, resulting in a fused formula
that we can use to stress-test SMT solvers. Do SMT solvers even have critical bugs? Yes! They do, and

1The most recent example is the CrowdStrike IT outage in July 2024, causing financial damage of 10+ billion USD.
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quite a few. We found 76 bugs in the Z3 and CVC4, the most powerful and popular SMT solvers with this
idea. Strikingly, we found soundness bugs, the most critical bug category, that can invalidate the results of
verification tools. Many of these bugs were undetected for years and some were shockingly simple. The
work had an eye-opening effect on the community and won a Distinguished Paper Award at PLDI ’20.

How can we effectively test SMT solvers? Semantic Fusion is a highly targeted attack, particularly
effective on nonlinear and string logic. As fusing two ancestor formulas produces a test formula with
a size equal to the combined size of its ancestors, it is crucial to carefully select the ancestor formulas
to avoid excessive timeouts during testing. This raises the question of whether we can design a more
lightweight technique that lets us leverage all available formulas. Operators are central to the semantics of
SMT formulas. If we change them, it affects the solution space of formulas, exercising new control and
dataflow in the solver codebase. Hence, mutating operators yields a simple and powerful technique for
testing SMT solvers [11]. We realized this idea in a testing tool called OpFuzz and conducted a large-scale
testing campaign. We found 1,200+ unique bugs in Z3 and CVC4. Most notably, OpFuzz found soundness
bugs in almost every theory of SMT. This came as a great shock to the SMT community. Despite its
unusual effectiveness, OpFuzz also has limitations. Formulas will stay at roughly the same size, i.e., they
cannot grow or shrink. In our OOPSLA ’21 work, we extended OpFuzz, yielding another 237 bugs [6].

Have we tested enough? With so many bugs being found, this is a natural follow-up question. Existing
SMT fuzzers cannot answer this question as they are unsystematic, randomly scattering large test formulas.
If fuzzers find no bugs, we do not know whether there are truly none or whether we were just out of luck.
Perhaps most importantly, fuzzers miss small-sized bugs. The small scope hypothesis [5] states that most
bugs of software trigger on small inputs. We confirmed this hypothesis for bugs in SMT solvers. My idea
to exploit this insight is to enumerate the smallest inputs from a context-free grammar. There are several
unique advantages to this approach. (1) it is systematic (2) if it finds bugs, they are small in size (3) it
provides bounded guarantees on formula spaces (4) we can measure the evolution of SMT solvers. We
integrate this idea in a tool called ET [10]. It works as follows: given a grammar that describes a relevant
formula space and a number of designated tests, it first compiles the grammar into algebraic datatypes in
Haskell. Using this representation, we then take an off-the-shelf enumerative testing library [3]. With ET,
we conducted a validation campaign of Z3 and cvc5, the two most widely used and popular solvers. We
found 100+ new bugs but perhaps more important than these bugs are the assurances that we gained: SMT
solvers no longer have bugs on the smallest formulas anymore. We are working on making ET a part of
SMT solver’s GitHub CI/CD pipelines.

Did SMT solvers become better, historically? This is an essential question that ET enables us to
investigate. To approach it, we tested all stable releases of Z3 and cvc5 on 8 million formulas generated by
ET, tracking the number of bugs being triggered. Our results show a clear trend: While early releases of
Z3 and cvc5 exhibit bugs in many theories, later releases show progressively fewer bugs and the latest Z3
has no bugs at all. Have we tested enough? Yes, under the assumption of the small scope hypothesis.

Future Direction: Developing Formal Methods Engineering

My long-term vision is to create a future in which bugs in software are an extreme rarity. To bring this
future to fruition, I will devote my career to developing Formal Methods Engineering (FME)—a new,
dedicated discipline for making Formal Methods more correct, stable, performant, and usable. With much
more powerful Formal Methods, we can prevent dangerous bugs in software. FME transforms the use of
Formal Methods from an ad hoc activity to a structured approach. FME is a pragmatic field connecting
the dots between the mostly theoretical Formal Methods research of the Programming Language and
Verification communities with the practical engineering reality. Three major challenges characterize the
Formal Methods Engineering field. My mission is to make substantial progress on each of them.

Challenge C1: Making SMT solvers much more solid, stable and performant SMT solvers are
the foundations for many Formal Methods tools. They are among the most complex software systems,
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frequently suffering from instability and performance issues. Moreover, even if SMT solvers can detect a
soundness bug, i.e., a wrong result occurs, they cannot recover from it. I will build new fully-functional
SMT solvers with small codebases fixing all these issues. The resulting solver will have fewer bugs, be
simpler, and much faster. Instead of building new SMT solvers from scratch, I start with an existing SMT
solver’s codebase (e.g., cvc5). The first step is reducing dead, unused, and rarely-used code. This is
formulated as an optimization problem trading off code size with its completeness.2 Our first results show
promising reductions of at least 50k out of 150k LoC for rarely-used life code alone while maintaining 95%
of the completeness of the solver. The second step is a new approach for self-correcting software using
parallelism. By fabricating equivalent versions of an input formula, we can correct unsoundness issues and
instabilities of SMT solvers. Orthogonal to this, I aim at exploring to make SMT solvers significantly faster
using techniques from compiler optimization and performance computing. This direction, if successful,
will lead to a new generation of SMT solvers, enabling more mainstream adoption, which will have a
substantial impact on academia and industry.

Challenge C2: Unifying testing and verification Testing and verification have fundamentally the same
goal: to make software more reliable. Instead of thinking about testing and verification as two separate sets
of techniques, we should rather think of them as one set of Formal Methods. A major research question
is: (a) How to combine the best of testing and verification? Concretely, given a software system S with
several components C ∈ S, how best to validate and analyze each component C with respect to the needed
assurances and costs. I aim at developing validation portfolios that given a program and its specification,
automatically select the appropriate technique for each component C. As an output, this yields a set of
bugs and a certificate to justify the thoroughness of the process. Moreover, I aim at hybrid approaches.
An instance of a hybrid approach is my OOPSLA ’24 work [10] which makes testing more systematic
yielding bounded guarantees. I will research validation portfolios and hybrid approaches leading to their
integration into mainstream toolchains.

A second fundamental research question is: (b) How can we build a theory for automated reasoning
about the reliability of software systems? Given a component C with a quality score and system S as a
dependency graph with components as its nodes, how can we infer an overall quality score for the entire
system S and identify its critical weak spots for more validation? Provided we can do this, what are the
appropriate techniques to eliminate the detected weak spots? I aim to formulate a theory clarifying these
questions for a more principled understanding of the quality of software systems.

Challenge C3: Specification Engineering Specifications are vital for the application of Formal Methods.
However, writing accurate specifications is tedious work done by humans. Hence, lowering human effort
in engineering specifications is key. One such approach is realized in Zelkova, AWS’s access policy
tool [1], eliminating the need for manually writing specifications. Instead, they let practitioners give
boolean answers. Another promising avenue is to use LLMs to infer specifications for software. In the
future, I aim to explore methods for engineering specifications.
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