
Dis. ETH No. 30617

SOLIDIFYING
MODERN

SMT SOLVERS
DOMINIK WINTERER

diss . eth no. 30617

S O L I D I F Y I N G M O D E R N S M T S O LV E R S

A thesis submitted to attain the degree of

doctor of sciences

(Dr. sc. ETH Zurich)

presented by

dominik winterer

M.Sc., Albert Ludwigs University of Freiburg

born on 28 August 1991

accepted on the recommendation of

Prof. Dr. Zhendong Su (ETH Zurich)

Prof. Dr. Peter Müller (ETH Zurich)

Prof. Dr. Maria Christakis (TU Vienna)

2024

Dominik Winterer: Solidifying Modern SMT Solvers, © 2024

A B S T R A C T

Satisfiability Modulo Theory (SMT) solvers realize one of the most powerful
and mature classes of formal methods. They are foundational for many
important advances in software research and industry. For example, one
large-scale application is realized by AWS, which uses SMT solvers for veri-
fying properties of cloud services. In almost all of their applications, SMT
solvers are critical components solving NP-hard problems and establish
trust through proof. Hence SMT solvers should be correct and performant,
particularly in safety-critical and security-critical domains. Until recently,
SMT solvers were widely trusted and believed to be solid.

This thesis puts the existing trust in SMT solvers to the test by proposing five
approaches to address the correctness and performance of SMT solvers. The
first approach is Semantic Fusion, a testing methodology to validate the
correctness of SMT solvers. Semantic Fusion demonstrated that SMT solvers
are less reliable than previously believed by finding dozens of soundness
bugs in Z3 and CVC4. Orthogonal to Semantic Fusion, we propose Type-
Aware Operator Mutation, a simple but unusually effective approach which
found a total of 1,254 bugs in Z3 and CVC4 including soundness bugs across
almost all theories in both solvers Z3 and CVC4/cvc5. To overcome the
limitations of Type-Aware Operator Mutation, we propose Generative Type-
Aware Mutation, an even more powerful approach, finding another 322 bugs
in Z3 and CVC4/cvc5, among them several longstanding soundness bugs
in CVC4. While the first three approaches focus on correctness, Janus is
a pioneering approach for finding incompleteness bugs in SMT solvers.
The final approach, Grammar-based Enumeration, addresses correctness
and performance. Its realization ET is not only an effective bug finder
but ET can help understand the evolution of SMT solvers. Our results
suggest improved correctness in recent versions of Z3 and CVC4/cvc5 but
decreased performance in newer Z3 releases.

This research enables one of the world’s largest academic bug-finding cam-
paigns. In five years, we found 1,825 unique bugs in Z3 and cvc5, among
which 1,333 were fixed. Strikingly, we found 483 soundness bugs among
which 349 were fixed. This thesis has significantly boosted research on
solidifying formal methods beyond SMT solvers.

iii

Z U S A M M E N FA S S U N G

Satisfiability Modulo Theory (SMT)-Solver gehören zu den mächtigsten und
ausgereiftesten Klassen formaler Methoden. Sie sind grundlegend für viele
wichtige Fortschritte in der Softwareforschung und -industrie. Ein großes
Anwendungsbeispiel ist AWS, das SMT-Solver zur Überprüfung von Cloud-
Dienst-Eigenschaften nutzt. In fast allen Anwendungen lösen SMT-Solver
NP-schwere Probleme und schaffen Vertrauen durch Beweise. Daher sollten
SMT-Solver korrekt und leistungsfähig sein, besonders in sicherheitskritischen
Bereichen. Bis vor kurzem galten SMT-Solver als vertrauenswürdig.

Diese Arbeit testet das bestehende Vertrauen in SMT-Solver durch fünf An-
sätze zur Verbesserung von Korrektheit und Leistung der Solver. Der erste
Ansatz ist Semantic Fusion, eine Testmethode zur Validierung der Korrekt-
heit von SMT-Solvern. Semantic Fusion zeigte, dass SMT-Solver weniger
zuverlässig sind als angenommen, indem es Dutzende von Soundness-Bugs
in Z3 und CVC4 fand. Orthogonal zu Semantic Fusion entwickeln wir
Type-Aware Operator Mutation vor, eine einfache, aber effektive Methode,
die insgesamt 1,254 Bugs in Z3 und CVC4 entdeckte, darunter Soundness-
Bugs in fast allen Theorien. Zur Überwindung der Beschränkungen von
Type-Aware Operator Mutation schlagen wir Generative Type-Aware Mu-
tation vor, einen noch leistungsfähigeren Ansatz, der weitere 322 Bugs in
Z3 und CVC4/cvc5 fand, darunter mehrere langjährige Soundness-Bugs in
CVC4. Während sich die ersten drei Arbeiten auf Korrektheit konzentrieren,
ist Janus ein innovativer Ansatz zum Finden von Unvollständigkeits-Bugs
in SMT-Solvern. Der letzte Ansatz, Grammar-based Enumeration, befasst
sich mit Korrektheit und Leistung. Das daraufbasierende Tool ET ist nicht
nur ein effektiver Bug-Finder, sondern hilft auch, die Entwicklung von
SMT-Solvern zu verstehen. Unsere Ergebnisse zeigen verbesserte Korrekt-
heit in neueren Versionen von Z3 und CVC4/cvc5, aber eine verringerte
Laufzeitperformanz in neueren Z3-Versionen.

Diese Forschung ermöglicht eine der weltweit größten akademischen Bug-
Findungs-Kampagnen. In fünf Jahren fanden wir 1,825 Bugs in Z3 und cvc5,
von denen 1,333 behoben wurden. Bemerkenswerterweise fanden wir 483

Soundness-Bugs, von denen 349 behoben wurden. Darüber hinaus hat diese
Arbeit die Forschung zur Festigung formaler Methoden über SMT-Solver
hinaus erheblich vorangetrieben.

v

P U B L I C AT I O N S

This thesis is based on the following publications:

• Dominik Winterer*, Chengyu Zhang*, Zhendong Su. “Validating
SMT Solvers via Semantic Fusion“. In: ACM Programming Language
Design and Implementation (PLDI), 2020. [1]

⋆ ACM Distinguished Paper Award

Invited to ACM TOPLAS Special Issue

• Dominik Winterer*, Chengyu Zhang*, Zhendong Su. “On the Un-
usual Effectiveness of Type-Aware Mutations for Testing SMT Solvers“
In: ACM Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2020. [2]

⋆ 1,000+ Bugs in the SMT Solvers Z3 and CVC4

• Jiwon Park*, Dominik Winterer*, Chengyu Zhang, Zhendong Su. “Gen-
erative Type-Aware Mutation for Testing SMT Solvers“ In: ACM
Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2021. [3]

⋆ 250+ Bugs in the SMT Solvers Z3 and CVC4

• Mauro Bringolf, Dominik Winterer, Zhendong Su. “Finding and
Understanding Incompleteness Bugs in SMT Solvers“ In: ACM/IEEE
Automated Software Engineering (ASE), 2022. [4]

• Dominik Winterer, Zhendong Su. “Grammar-based Enumeration
of SMT Solvers for Correctness and Performance“. In ACM Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA),
2024. [5]

⋆ Bounded Validation of the SMT Solvers Z3 and cvc5

* equal contribution

The following publication was part of my doctoral research but presents
results outside the scope of this thesis:

• Vince Szabó, Dominik Winterer, Zhendong Su. “CQ: A Metric for the
Hardness of Programming Languages“. In: Arxiv, 2024. [6]

vii

A C K N O W L E D G E M E N T S

I want to thank all the people who supported me during my Ph.D. studies.
First and foremost, I would like to thank my advisor Zhendong Su for his

support and guidance. Insisting on the highest standards, persistence, and
hard work, Zhendong has been a role model in so many areas. I appreciate
his trust, help, and the opportunity to realize Project YinYang for SMT Solver
Testing, the boldest possible research project that I could imagine.

I thank Peter Müller and Maria Christakis for accepting to serve as
co-examiners of this thesis.

I had insightful discussions with Eric Bodden, Nikolaj Bjørner, Mar-
cel Böhme, Michael Pradel, Benjamin Pierce, Nada Amin, André Platzer,
Magnus Madsen, T. Y. Chen, Markus Püschel, and Ralf Jung. Thank you!

During my internship at AWS, I could apply SMT solver testing to a
production setup. I am grateful to Robert Jones and Bruno Dutretre for
this opportunity and enjoyed the discussions with Clark Barrett, Andy
Reynolds, and Leo de Moura during that time. I am grateful to all SMT
solver developers for their incredible work in addressing our bug reports.

A special thanks goes to my collaborators, especially Chengyu Zhang.
From joyfully screaming in the ETH hallway when finding the first sound-
ness bug in Z3, we have come a long way. I enjoyed collaborating with
my former students Jiwon Park and Mauro Bringolf which resulted in two
works contributing to this research. I thank the proofreaders: Hao Sun,
Amar Shah, Tracy Ewen, Theo Sotiropoulos, Cong Li, and Gloria Esposito.

I thank my early mentors and great researchers from the AI Planning
community, especially Robert Mattmüller, Martin Wehrle, Michael Katz, and
Florian Pommerening. During my time at the University of Freiburg, they
taught me rock-solid research fundamentals, opened doors, and treated me
as an equal. Each of them has, in their own way, influenced my career and
research style. To this day, I greatly benefit from having worked with them.

Big thanks to all current and former members of the AST lab, not yet
mentioned: Shaohua Li, Manuel Rigger, Theodoros Theodoridis, Sverrir
Thorgeirsson, Jiang Zhang, Michel Weber, Zu-Ming Jiang, Yann Giersberger
and many others! I also want to thank the communication specialist Tracy
Ewen and the assistants Christian Rossi and Ariane Nake.

I thank my friends Moritz Freidank, Dev and Deep Ganatra, Elias Rom-
bach and the folks from CityRunning West for fresh perspectives from out-

ix

https://testsmt.github.io/
https://testsmt.github.io/

side academia. I am grateful to my family especially to my father Michael
X. Winterer for exposing me to computers at an early age.

I owe my gratitude to my partner Gloria Esposito who has been a rock in
my life for over a decade. You have always been a great source of inspiration,
counsel, help, and love.

Zurich, December 2024

Dominik Winterer

x

C O N T E N T S

1 Introduction 1

1.1 Main Contributions 2

1.2 Impact 3

1.3 Chapter Previews 4

1.3.1 Semantic Fusion 4

1.3.2 Type-Aware Operator Mutation 6

1.3.3 Generative Type-Aware Mutation 7

1.3.4 Weakening and Strengthening/Janus 9

1.3.5 Grammar-based Enumeration/ET 11

2 Background 15

2.1 Satisfiability Modulo Theories 15

2.1.1 SMT-LIB Initiative, Language, and Benchmarks 16

2.1.2 Applications in Academia and Industry 17

2.2 Automated Software Testing 17

2.2.1 Test Generation and Oracle Problem 17

2.2.2 Bug Types in SMT Solvers 18

2.2.3 Bug detection, Deduplication, and Reduction 19

3 Semantic Fusion 21

3.1 Illustrative Examples 21

3.2 Semantic Fusion 24

3.2.1 Sat Fusion 26

3.2.2 Unsat Fusion 26

3.2.3 Mixed Fusion 27

3.3 Fusion and Inversion Functions 27

3.4 The YinYang tool 29

3.5 Empirical Evaluation 32

3.5.1 Evaluation Setup 33

3.5.2 Quantitative Evaluation 35

3.6 Selected Bugs 42

3.7 Discussion 46

3.8 Related Work 49

4 Type-Aware Operator Mutation 51

4.1 Motivation 51

4.2 Illustrative Examples 54

4.3 Type-Aware Operator Mutation 56

xi

xii contents

4.4 Empirical Evaluation 60

4.4.1 Evaluation Setup 61

4.4.2 Evaluation Results 63

4.5 In-depth Bug Analysis 69

4.5.1 Quantitative Analysis 69

4.5.2 Insights 74

4.5.3 Selected Bug Samples 75

4.6 Related Work 79

5 Generative Type-Aware Mutation 83

5.1 Motivation 83

5.2 Illustrative Example 84

5.3 Generative Type-Aware Mutation 86

5.3.1 Relationships to FuzzChick and Operator Mutation 88

5.3.2 TypeFuzz 90

5.4 Empirical Evaluation 93

5.5 Selected Bug Samples 100

5.6 Limitations & Data-Driven Type-Aware Mutation 103

5.7 Related Work 103

6 Weakening and Strengthening/Janus 107

6.1 Motivation 107

6.2 Problem Statement 109

6.3 The Janus Framework for Finding Incompleteness Bugs 112

6.3.1 Approach Overview 112

6.3.2 Weakening & Strengthening 112

6.4 Evaluation 116

6.5 Selected Bug Samples 120

6.6 Related Work 123

7 Grammar-based Enumeration/ET 125

7.1 Motivation 125

7.2 Illustrative Example 128

7.3 Grammar-based Enumeration 130

7.4 Empirical Evaluation 134

7.5 Discussion 148

7.6 Related Work 149

8 Conclusion and Outlook 153

8.1 Summary 153

8.2 Impact 154

8.3 Outlook 156

contents xiii

Bibliography 159

a Appendix 171

a.1 Semantic Fusion 171

a.2 Type-Aware Operator Mutation 172

a.3 Weakening and Strengthening/Janus 173

a.4 Grammar-based Enumeration/ET 174

1
I N T R O D U C T I O N

Formal methods, studied for decades, are experiencing a major comeback
in computer science [7]. One of the most powerful and mature classes of
formal methods are Satisfiability Modulo Theory (SMT) solvers. SMT solvers
generalize SAT solvers and check the satisfiability of formulas with back-
ground theories relevant to programming languages and systems. SMT
solvers are foundational for many important advances in software engi-
neering, programming languages, and computer-aided verification. These
include symbolic execution [8, 9], program synthesis. [10], solver-aided
programming [11], program verification [12, 13], model checking [14], and
neural network verification [15]. Recently, SMT solvers have also been in-
creasingly adopted in industry. Applications include Zelkova, AWS’ tool
for verifying access policy properties [16], AdaCore Spark [17] for verifying
cyber-physical systems, and Microsoft’s SecGuru [18] for the verification
of network policies. In all these applications, the SMT solver is a critical
component solving an NP-hard problem and/or establishing trust through
proof. However, buggy or slow SMT solvers can have severe consequences,
particularly in the safety-critical and security-critical domains. Hence SMT
solvers must be both correct and performant. However, ensuring their correct-
ness and performance is challenging because of several reasons: (1) large
codebases of the industrial-strength solvers Z3 and cvc5, (2) expressive
input language of the solvers, and (3) the oracle problem: to validate the
correctness of solver results.

Overarching goal of this thesis: To solidify modern SMT solvers through
designing principled, general automated testing techniques and tools.

There are two key aspects in pursuing this goal: correctness and performance.
This thesis contributes a research strand of five consecutive works, the first
three on correctness, the fourth on performance, and the fifth on both. In
all works, we view the SMT solvers as black box similar to real-world users.
All proposed techniques belong to the family of automated software testers.
They are general methodologies to facilitate adoption to other domains.
Beyond its contributions to SMT solvers, we demonstrated that formal
methods can benefit from automated software testing.

1

2 introduction

Approach Focus Oracle Test generation

Semantic Fusion correctness metamorphic mutational random

Type-Aware Operator Mutation correctness differential mutational random

Generative Type-Aware Mutation correctness differential
mutational
generative

random

Weakening and Strengthening performance metamorphic mutational random

Grammar-based Enumeration
correctness

performance
differential generative enumerative

Figure 1.1: The five approaches proposed in the thesis.

1.1 main contributions

The main contributions of the thesis are realized in a single research strand
of five consecutive works. We categorize them by their focus and how they
address the test generation and oracle problems (Figure 1.1).

semantic fusion (chapter 3) Semantic Fusion is a novel, general test-
ing methodology for validating SMT solvers. Semantic Fusion had
a significant impact: it was the first approach to find a significant
number (39) of soundness bugs in the solvers, mostly in nonlinear
logic and string theory, mainly in Z3, and only few in CVC4.

type-aware operator mutation (chapter 4) Complementing
Semantic Fusion, Type-Aware Operator Mutation is a testing technique
with a differential oracle. Its key idea is mutating operators of the
same type. It is simple but unusually effective: We found 1,254 bugs
overall and 312 soundness bugs in almost every logic of Z3 and CVC4.

generative type-aware mutation (chapter 5) Despite its effective-
ness, Type-Aware Operator Mutation cannot grow or shrink SMT
formulas. To overcome this, we devised Generative Type-Aware Muta-
tion which can generate expressions with fresh operators and replace
existing expressions. The technique found another 322 bugs in Z3 and
CVC4/cvc5, among them several longstanding soundness bugs.

weakening and strengthening/janus (chapter 6) While the pre-
vious works focus on correctness, this work is on performance. We
define incompleteness bugs for SMT solvers and propose Janus, a tool

1.2 impact 3

Category Reported Fixed

Both solvers 1,825 1,333

Z3 1,273 928

CVC4/cvc5 552 405

Default Mode (Z3) 750 569

Default Mode (CVC4/cvc5) 279 196

Soundness Bugs (Z3) 395 275

Soundness Bugs (CVC4/cvc5) 88 74

Performance Bugs (Z3) 74 25

Performance Bugs (CVC4/cvc5) 40 18

Figure 1.2: Overall statistics on bugs found in the fuzzing campaign enabled by
the research presented in this thesis (July 2019 - July 2024).

for finding incompleteness bugs based on Weakening and Strengthening,
a technique for mutating SMT solvers in a satisfiability-preserving
manner. Janus is effective: it found 31 incompleteness bugs, of which
20 are already fixed.

grammar-based enumeration/et (chapter 7) The final piece ad-
dresses both correctness and performance. Different from the others,
Grammar-based Enumeration’s testing is enumerative, not random. Our
realization ET has many benefits: (1) It is a highly effective bug finder
finding 102 bugs, out of which 76 were confirmed and 32 were fixed.
(2) As ET enumerates from small to larger inputs, ET obsoletes bug
reduction. (3) Finally ET can be used to understand the evolution of
solvers. Our results suggest improved correctness in recent versions
of both solvers but decreased performance in newer releases of Z3.

1.2 impact

bug findings The research presented in this thesis enabled one of the
world’s largest academic fuzzing campaigns with a significant impact on soft-
ware research and formal methods. Since July 2019, we found 1,825 bugs
in the SMT solver Z3 and CVC4/cvc5 out of which 1,333 were fixed (see
Figure 1.2). Perhaps most notably, we reported 483 soundness bugs out of
which 286 were in the default modes of the solvers.

4 introduction

tools & frameworks We realized Semantic Fusion, Type-Aware Op-
erator Mutation, and Generative Type-aware Mutation in YinYang, an open-
source testing framework for SMT solvers. We realized Weakening and
Strengthening in Janus which is based on YinYang.1 At the time of this
writing, YinYang and Janus2 have a combined 190 stars and 22 forks on GitHub.
Grammar-based enumeration is realized in ET and currently has 22 stars.

impact in the research community The research line described in
this thesis opened up a new research (sub-)area for testing formal methods
software and beyond. Works divide roughly into SMT testers [19, 20, 21,
22, 23, 24, 25], testers for other formal methods tools [26, 27, 28] and as
benchmarks for bug finding works [19, 29]. Strikingly, SMT solvers such as
cvc5 [30] and AltErgo [22] proposed dedicated fuzzers.

impact in industry The research line described in this thesis had
an impact on industry. At Google, developers working on validating SQL
queries through SMT found YinYang useful and awarded it a Google Open
Source Peer Bonus. Moreover, we received an Amazon Research Award for
our proposal on "Practical Techniques for Reliable, Robust and Performant
SMT Solvers". During my internship at AWS’s automated reasoning group,
I used ET for solidifying the string solver nfa2sat [31] which is part of
Zelkova [16], and is used in production.

1.3 chapter previews

This section previews the five main chapters. For a smooth reading ex-
perience of the entire thesis, we recommend starting with Background
(Section 2). Each of the five main chapters can then be read independently.

1.3.1 Semantic Fusion

motivation As of early 2019, there was little reason to doubt the re-
liability of SMT solvers. Z3 and CVC4, the two most popular and widely
used solvers, had been developed for over a decade and only exhibited
very few soundness issues. As a result, the solvers were regarded as mature
and were widely trusted. This work is the first to challenge this trust in the
solvers. Its results were surprising and had a significant impact.

1 https://github.com/testsmt/yinyang
2 https://github.com/testsmt/janus

https://github.com/testsmt/yinyang
https://github.com/testsmt/janus
https://opensource.googleblog.com/2021/04/announcing-first-group-of-google-open-source-peer-bonus-winners.html
https://opensource.googleblog.com/2021/04/announcing-first-group-of-google-open-source-peer-bonus-winners.html
https://inf.ethz.ch/news-and-events/spotlights/infk-news-channel/2022/07/amazon-research-award-zhendong-su.html
https://github.com/testsmt/yinyang
https://github.com/testsmt/janus

1.3 chapter previews 5

φ1 = x > 0∧ x > 1
φ2 = y < 0∧ y < 1

φconcat = (x > 0∧ x > 1) ∧ (y < 0∧ y < 1)

φfused = (x > 0∧ z− y > 1) ∧ (z− x < 0∧ y < 1)

Figure 1.3: Semantic Fusionon two satisfiable formulas φ1 and φ2. Variable z
realizes the fusion function z = x + y. Shaded: Randomly chosen
occurrences of x and y to be replaced by variable inversion terms.

approach We introduce Semantic Fusion, a general, effective approach
to validating SMT solvers. Our key insight is to fuse two tests into a new
test that combines the structures of its ancestors. We fuse two equisatisfiable
formulas φ1 and φ2 (i.e., both φ1 and φ2 are either satisfiable or unsatisfi-
able) into an equisatisfiable formula φfused. Semantic Fusion consists of the
following three main steps:

1. Formula Concatenation: Concatenate φ1 and φ2 by formula conjunction
or disjunction;

2. Variable Fusion: Create fresh variables to connect the variable sets of
φ1 and φ2 using fusion functions; and

3. Variable Inversion: Substitute some occurrences of the chosen variables
in φ1 and φ2 by inversion functions.

Figure 1.3 illustrates Semantic Fusion on two satisfiable formulas φ1 and
φ2. We first concatenate φ1 and φ2, and obtain φconcat as a result. Then,
we introduce a fresh variable z and a fusion function f (x, y) = x + y, and
construct a relation z = f (x, y), which induces two equations x = z− y
and y = z− x. From these two equations, we obtain two inversion functions
rx(y, z) = z − y and ry(x, z) = z − x. Next, we replace the highlighted
occurrences of x and y by the corresponding inversion functions rx(y, z)
and ry(x, z), which results in formula φfused. By construction, the formula
φfused is also satisfiable. We feed φfused to the SMT solver under test and
observe the result. If the result is unsat, we have detected a (soundness)
bug in the SMT solver under test.

main results We introduced Semantic Fusion, a novel, general method-
ology for stress-testing SMT solvers. Based on the Semantic Fusion method-
ology, we design and develop the first highly effective framework, YinYang

6 introduction

for SMT solver validation — the tool is customizable and conveniently
supports various SMT theories. We conduct a testing campaign of Z3 and
CVC4 using YinYang to demonstrate its effectiveness. We found and reported
76 bugs in Z3 and CVC4 out of which 62 bugs were confirmed and 57 were fixed.
All bugs were in the default arithmetic and string solvers. This work realizes the
largest and most successful testing campaign against SMT solvers.3

1.3.2 Type-Aware Operator Mutation

motivation Semantic Fusion [1] and STORM [32] have demonstrated
that SMT solvers are clearly less reliable than previously presumed. Yet it
is unclear whether SMT solvers have reached a strong level of maturity or
whether many critical bugs remain. This chapter proposes a simple but
unusually effective approach for testing SMT solvers finding 1,254 unique
bugs in the state-of-the-art SMT solvers Z3 and CVC4.

approach To answer this question, we introduce Type-Aware Operator
Mutation, a simple, yet unusually effective approach for stress-testing SMT
solvers. Its key idea is to mutate functions within SMT formulas with
functions of conforming types. Figure 1.4 illustrates type-aware operator
mutation on an example formula. We replace the "distinct" in φ by an
operator of conforming type, e.g., the equals operator "=" to obtain formula
φtest. We then differentially test SMT solvers with φtest as input and observe
their results. If the results differ, e.g., one SMT solver returns sat while
the other returns unsat, we found a soundness bug in either of the tested
solvers. Formula φtest is clearly unsatisfiable, as b cannot exist whenever a
is odd. In fact, while CVC4 correctly returns unsat on φtest, Z3 incorrectly
reports sat on φtest. Thus, φtest has triggered a soundness bug in Z3 which
was promptly fixed by Z3’s main developer.

main results We introduced Type-Aware Operator Mutation, a sim-
ple, but unusually effective approach for stress-testing SMT solvers. We
realized Type-Aware Operator Mutation in OpFuzz which helps SMT solver
developers and practitioners to stress-test SMT solver decision procedures.
We stress-tested Z3 and CVC4 using OpFuzz, and reported 1,254 bugs. Out of
these, 963 bugs were confirmed, and 917 bugs were fixed. Perhaps most notably,
we found soundness bugs in almost all logics of Z3 and many in CVC4. OpFuzz is

3 At the time of publication of this work at PLDI ’20.

1.3 chapter previews 7

; \phi
(assert (forall ((a Int))

(exists ((b Int))

(distinct (* 2 b) a))))

(check-sat)

; \phi_{test}
(assert (forall ((a Int))

(exists ((b Int))
(= (* 2 b) a))))

(check-sat)

Figure 1.4: Type-aware operator mutation illustrated. We mutate the distinct
operator in φ to the equals operator (see φtest). Formula φtest triggers a
soundness bug in Z3 which reports sat on this unsatisfiable formula.
https://github.com/Z3Prover/z3/issues/3973

also the first to find a significant number of soundness bugs in CVC4, which has
resisted several fuzzing campaigns up to this point.

1.3.3 Generative Type-Aware Mutation

motivation Several ongoing fuzzing campaigns have been continu-
ously fuzzing SMT solvers Z3 and CVC4. This has led to many fixes in
them. One such approach is OpFuzz which found several hundreds of bugs.
However, despite its effectiveness, OpFuzz has several limitations. First,
OpFuzz has a finite mutation space: the seed formulas have a fixed set of
operators with only 2-3 choices for mutating each of them. Second, as a
consequence of the bug fixes in the SMT solvers Z3 and CVC4, fuzzers
are finding progressively fewer critical bugs. We propose Generative Type-
Aware Mutation, to overcome these shortcomings.

approach The key idea of Generative Type-Aware Mutation is mutating
expressions in the AST of an SMT-LIB script by newly generated expressions
of the same type. Let φ be a seed formula (see Figure 1.5).

step 1 choose a random expression : We first choose a random ex-
pression expr1 from the set of φ’s expressions expr(φ). Say we have
picked the expr1 = x. The expression is of type String and will serve
as the replacee for the newly generated expression.

step 2 choose a random operator : Next, we choose a suitable ran-
dom operator. Such an operator should have the return type String

and for all of its arguments, there should be at least one expression of
conforming type in expr(φ). Since φ contains terms of type Bool, Int,
and String, the operator’s arguments should be one of those types.

https://github.com/Z3Prover/z3/issues/3973

8 introduction

(declare-fun x () String)
(assert (> (- (str.to_int

(str.++ x x))) 0))

(check-sat)

expr1 ∈ { x , 0, (str.++ x x),· · ·}

(a) Choose random expression

op ∈ { str.from_int , str.++, · · ·}

(str.from_int Int String)

int ∈ { 0 , (str.to_int (str.++ x x)),

(- (str.to_int (str.++ x x)))}

(b) Choose operator & integer expression

op int

expr2 = (str.from_int 0)

(c) Generate new expression

(declare-fun x () String)
(assert (> (- (str.to_int

(str.++ (str.from_int 0) x))) 0))

(check-sat)

(d) Mutant formula φmutant (Z3#5108)

Figure 1.5: Generative Type-Aware Mutation illustrated.

Candidates are the string to integer conversion function str.from_int,
the string concatenation str.++, and all other operators taking Bool,
String as arguments and returning Bool. Assume we have chosen the
operator str.from_int.

step 3 generate new expression : Then, we generate an expression
expr2 with respect to the signature of the chosen operator. The signa-
ture for the operator str.from_int is defined as

(str.from_int Int String)

Hence, we select an Int expression from expr(φ). For the single pa-
rameter of type Int, we choose 0. Then, with the chosen operator and
expression, we construct the following new expression:

expr2 = (str.from_int 0)

step 4 substitution : Finally, we substitute expr1 by expr2 in φ which
results in the formula φmutant. We feed φmutant to two or more SMT
solvers and compare their results.

main results We introduced Generative Type-Aware Mutation, a novel,
effective approach for stress-testing SMT solvers. Generative Type-Aware
Mutation is a hybrid of mutation-based and grammar-based fuzzing and
has an infinite mutation space, overcoming one of OpFuzz’s key limitations.

https://github.com/Z3Prover/z3/issues/5108

1.3 chapter previews 9

1 2 . . . n− 1 n
(declare-const x Int)

(declare-const x9 Bool)

(declare-const x8 Bool)

(assert (and x8 x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

(declare-const x Int)

(declare-const x9 Bool)

(assert (and x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

. . .

(declare-const x Int)

(declare-const x9 Bool)

(assert (or x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

(declare-const x Int)

(declare-const x9 Bool)

(assert (or x9 (str.prefixof

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

∧

∧

x8 x9

=

E1 E2

∧

x9 =

E1 E2 . . .

∨

x9 =

E1 E2

∨

x9 str.prefixof

E1 E2

z3-4.8.10 sat sat . . . sat sat

z3-trunk sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Figure 1.6: Finding regression incompleteness with Janus: sample mutation chain
leading to a regression incompleteness in Z3 (Z3#5381).

Based on Generative Type-Aware Mutation, we have realized TypeFuzz. We
reported 322 bugs in the Z3 and CVC4 with TypeFuzz. Among these, 290

bugs were confirmed and 278 bugs were fixed. Most notably, Generative Type-
Aware Mutation found 20 soundness bugs in CVC4’s default mode alone. Several
of them (7/20) are 2 years latent and predate all previous fuzzing campaigns.

1.3.4 Weakening and Strengthening/Janus

motivation An SMT solver returns unknown on a formula if it cannot
determine the satisfiability formula. Incompleteness bugs, i.e. unexpected
unknown-results, impact the performance of SMT solvers’ client applications
frustrating their developers. In this work, we (1) formalize two types of
incompleteness bugs in SMT solvers, and (2) propose a technique and tool
for finding incompleteness bugs.

approach This section presents Janus, our approach to tackling regres-
sion and implication incompletenesses. Regression incompletenesses are
caused by (recent) code changes leading to an incompleteness on previ-
ously solved formulas. Typically such bugs affect client software that works
correctly with an older version of the SMT solver but fails after updating
the solver. Implication incompletenesses occur when an SMT solver solves a
given input formula φ but minor changes in the formula (i.e. the mutation to

https://github.com/Z3Prover/z3/issues/5381

10 introduction

1 2 . . . n− 1 n
(declare-const s Real)

(declare-const k Real)

(assert (and (= s k)

(= (* s k) 1)))

(check-sat)

(declare-const s Real)

(declare-const k Real)

(assert (and (= (* s k) 1)))

(check-sat)

. . .
(declare-const k Real)

(declare-const s Real)

(assert (= (* s k) 1))

(check-sat)

(declare-const k Real)

(declare-const s Real)

(assert (>= (* s k) 1))

(check-sat)

∧

=

· 1

s k

=

s k

∧

=

· 1

s k . . .

=

· 1

s k

≥

· 1

s k

cvc5 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Figure 1.7: Finding an implication incompleteness with Janus: sample mutation
chain leading to an implication incompleteness in cvc5 (cvc5#10891).

φ′) cause the solver to report unknown. Such formula pairs suggest possible
improvements for SMT solvers, e.g., to formula rewriters, pre-processors,
theory solvers etc. If φ was generated by a client application of an SMT
solver, fixing such bugs makes the application more robust.

Janus has two concurrent modes, one for each bug type. We describe them
in two separate examples. Finding regression incompletenesses Figure 1.6
shows a mutation chain of Janus for finding regression incompletenesses
(from left to right). Janus starts with a seed formula on which both Z3 and
legacy z3-4.8.10 return sat (step 1). Janus then chooses a random rule from
its rule set and applies it to the seed (step 2). The process continues up
to the point where Z3 returns unknown and z3-4.8.10 returns sat. Janus
detected a regression incompleteness. This is a real case, i.e. an actual bug
that we reported to the issue tracker of Z3. Figure 1.7 shows a mutation
chain of Janus for finding regression incompletenesses (from left to right).
Janus starts with a satisfiable seed formula (step 1). Janus then chose a
satisfiability-preserving transformation rule, e.g., dropping the first conjunct
of the and expression. As the oracle is sat, we weaken, if the oracle was
unsat, we would strengthen. This results in a mutated formula (step 2)
satisfiable by construction. Janus generates mutants this way until the solver
returns unknown. SMT solver developers can investigate the unknown case
together with the rule (c.f. step n− 1 to n) that led to the unknown-result to
understand why the SMT solver has failed. This is a real case. We reported
it to the issue tracker of cvc5.

https://github.com/cvc5/cvc5/issues/10891

1.3 chapter previews 11

main results We proposed Janus, an approach for finding incomplete-
ness bugs in SMT solvers. We stress-tested the two state-of-the-art SMT solvers
Z3 and CVC5 with Janus and totally reported 31 incompleteness bugs. Out of
these, 26 have been confirmed as unique bugs and 20 are already fixed by the
developers. Our diverse bug findings uncovered functional, regression, and
performance bugs—several triggered discussions among the developers
sharing their in-depth analysis.

1.3.5 Grammar-based Enumeration/ET

motivation SMT solvers must be both correct and performant, particu-
larly in safety-critical and security-critical domains. In the last several years,
there has been much effort in improving SMT solvers, especially through
fuzzing [1, 2, 21, 32]. Z3 and cvc5 are the two most powerful SMT solvers
and are very reliable. Developers of Z3 and cvc5 fixed hundreds of correct-
ness and performance bugs found by fuzzers. As a result of these and other
fixes, SMT solvers have greatly matured. However, despite this, all existing
fuzzers are unsystematic focusing on random testing. Unsystematic testing
can lead to missed bugs and does not provide any guarantees.

approach This work changes the perspective on testing SMT solvers
advocating for systematic, grammar-based enumeration rather than random-
based testing. We propose ET, a grammar-based enumeration tool for SMT
solvers. We compile context-free grammars of the SMT theories to algebraic
datatypes and leverage FEAT [33], an approach for functional enumeration.
This realizes a test generator which ET couples with an oracle to perform
differential testing between the solvers. Given a context-free grammar G, a
number of tests N, and two or more SMT solvers, ET stress-tests each solver
with the N-smallest inputs w.r.t. grammar G. This approach has multiple
unique benefits: (1) it exploits the small scope hypothesis which states that
most bugs trigger on small-sized inputs [34, 35], (2) because of the small-
sized bug triggers it is particularly suitable for identifying performance
issues, and (3) it provides bounded correctness assurances. Using ET, we
conducted a large-scale fuzzing campaign for correctness and performance
bugs in the state-of-the-art SMT solvers Z3 and cvc5. We reported 102 bugs
among which 76 bugs were confirmed and 32 bugs were already fixed.
We found bugs in various SMT theories, including arrays, floating points,
real and integer arithmetic, strings etc. Even though SMT solvers have been

12 introduction

Z3 CVC4/5

z3
−4

.5
.0

z3
−4

.6
.0

z3
−4

.7
.1

z3
−4

.8
.1

z3
−4

.8
.3

z3
−4

.8
.4

z3
−4

.8
.5

z3
−4

.8
.6

z3
−4

.8
.7

z3
−4

.8
.8

z3
−4

.8
.9

z3
−4

.8
.1

0
z3

−4
.8

.1
1

z3
−4

.8
.1

2
z3

−4
.8

.1
3

z3
−4

.8
.1

4
z3

−4
.8

.1
5

z3
−4

.8
.1

6
z3

−4
.8

.1
7

z3
−4

.9
.0

z3
−4

.9
.1

z3
−4

.1
0.

0
z3

−4
.1

0.
1

z3
−4

.1
0.

2
z3

−4
.1

1.
0

z3
−4

.1
1.

2
z3

−4
.1

2.
0

z3
−4

.1
2.

1
z3

−4
.1

2.
2

z3
−4

.1
2.

3
z3

−4
.1

2.
4

z3
−4

.1
2.

5
z3

−4
.1

2.
6

z3
−4

.1
3.

0
cv

c4
−1

.5
cv

c4
−1

.6
cv

c4
−1

.7
cv

c4
−1

.8
cv

c5
−0

.0
.2

cv
c5

−0
.0

.3
cv

c5
−0

.0
.4

cv
c5

−0
.0

.5
cv

c5
−0

.0
.6

cv
c5

−0
.0

.7
cv

c5
−0

.0
.8

cv
c5

−0
.0

.1
0

cv
c5

−0
.0

.1
1

cv
c5

−0
.0

.1
2

cv
c5

−1
.0

.0
cv

c5
−1

.0
.1

cv
c5

−1
.0

.2
cv

c5
−1

.0
.3

cv
c5

−1
.0

.4
cv

c5
−1

.0
.5

cv
c5

−1
.0

.6
cv

c5
−1

.0
.7

cv
c5

−1
.0

.8
cv

c5
−1

.0
.9

cv
c5

−1
.1

.0
cv

c5
−1

.1
.1

cv
c5

−1
.1

.2

100

10,000

1,000,000

solver

bu

g
tr

ig
ge

rs
Number of bug triggers by solver

Z3 CVC4/5

0.015625s
8s

z3
−4

.5
.0

z3
−4

.6
.0

z3
−4

.7
.1

z3
−4

.8
.1

z3
−4

.8
.3

z3
−4

.8
.4

z3
−4

.8
.5

z3
−4

.8
.6

z3
−4

.8
.7

z3
−4

.8
.8

z3
−4

.8
.9

z3
−4

.8
.1

0
z3

−4
.8

.1
1

z3
−4

.8
.1

2
z3

−4
.8

.1
3

z3
−4

.8
.1

4
z3

−4
.8

.1
5

z3
−4

.8
.1

6
z3

−4
.8

.1
7

z3
−4

.9
.0

z3
−4

.9
.1

z3
−4

.1
0.

0
z3

−4
.1

0.
1

z3
−4

.1
0.

2
z3

−4
.1

1.
0

z3
−4

.1
1.

2
z3

−4
.1

2.
0

z3
−4

.1
2.

1
z3

−4
.1

2.
2

z3
−4

.1
2.

3
z3

−4
.1

2.
4

z3
−4

.1
2.

5
z3

−4
.1

2.
6

z3
−4

.1
3.

0
cv

c4
−1

.5
cv

c4
−1

.6
cv

c4
−1

.7
cv

c4
−1

.8
cv

c5
−0

.0
.2

cv
c5

−0
.0

.3
cv

c5
−0

.0
.4

cv
c5

−0
.0

.5
cv

c5
−0

.0
.6

cv
c5

−0
.0

.7
cv

c5
−0

.0
.8

cv
c5

−0
.0

.1
0

cv
c5

−0
.0

.1
1

cv
c5

−0
.0

.1
2

cv
c5

−1
.0

.0
cv

c5
−1

.0
.1

cv
c5

−1
.0

.2
cv

c5
−1

.0
.3

cv
c5

−1
.0

.4
cv

c5
−1

.0
.5

cv
c5

−1
.0

.6
cv

c5
−1

.0
.7

cv
c5

−1
.0

.8
cv

c5
−1

.0
.9

cv
c5

−1
.1

.0
cv

c5
−1

.1
.1

cv
c5

−1
.1

.2

0

2,000,000

4,000,000

6,000,000

8,000,000

7,900,000

7,950,000

8,000,000

solver

so

lv
ed

 fo
rm

ul
as

Number of Solved formulas

Figure 1.8: Evolution results for Z3 & CVC4/cvc5 releases from the last six years.
Top: correctness in number of bug triggers. Bottom: performance in
number of solved formulas.

extensively and continuously tested, we are still able to quickly find these
bugs while the benefits of the other fuzzers seem to have saturated.

Quantifying solver evolution helps developers understand long-term
effects and users to judge particular features. With ET, we tested all consec-
utive versions of the SMT solvers Z3 and CVC4/cvc5 from the last six years
(61 solvers). We devised eight grammars for the official SMT theories and
generated one million formulas per grammar.

main results We introduce ET, a grammar-based enumerator for
validating SMT solver correctness and performance. ET is highly effective
at bug finding and has many complimentary benefits. Despite the extensive
and continuous testing of the state-of-the-art SMT solvers Z3 and cvc5,
ET found 102 bugs, out of which 76 were confirmed and 32 were fixed.
Moreover, ET can be used to understand the evolution of solvers. We derive
eight grammars realizing all major SMT theories including the booleans,
integers, reals, realints, bit-vectors, arrays, floating points, and strings. Using
ET, we test all consecutive releases of the SMT solvers Z3 and CVC4/cvc5

from the last six years (61 versions) on 8 million formulas, and 488 million
solver calls. Our results suggest improved correctness in recent versions of both

1.3 chapter previews 13

solvers but decreased performance in newer releases of Z3 on small timeouts (since
z3-4.8.11) and regressions in early cvc5 releases on larger timeouts (see Figure 1.8).

2
B A C K G R O U N D

Before diving into the contributions of this thesis, we present background
on SMT and automated testing. We refer unfamiliar readers to Kroening
and Strichman’s book for an excellent in-depth introduction to SMT [36].

2.1 satisfiability modulo theories

This subsection gives the necessary background on SMT and SMT solvers.
We assume basic familiarity with propositional and first-order logic.

Definition 2.1.1 (Satisfiability modulo theories). Satisfiability Modulo The-
ories (SMT) is the problem of determining the satisfiability of a formula φ

in a first-order theory T. We call φ an SMT formula.

The theories T are aimed at modeling software and systems. They include
the booleans, linear and nonlinear integer/real arithmetic, bitvectors, arrays,
uninterpreted functions, floating points, strings, and can be combined.1

As SMT generalizes SAT, it is NP-hard and can be undecidable for some
theories and logics. For an SMT formula φ, we denote its free variables
by vars(φ). A substitution of a variable x in vars(φ) by an expression
e is denoted by φ[e/x]. A model M for φ is a function that maps all
free variables x1, · · · xn ∈ vars(φ) to values in their domains such that
φ[M(x1)/x1, · · · , M(xn)/xn] simplifies to true. If formula φ has at least one
model, we call it satisfiable and unsatisfiable otherwise. A formula without
free variables is called a sentence. As an example consider the formula:

φ = ∀a ∈ Z ∃b ∈ Z 2 · b = a

The formula says that for every integer a, there is an integer b such that a is
twice as big as b. This means intuitively "every integer is even". As this is not
the case, there is no model for φ and hence φ is unsatisfiable.

Definition 2.1.2 (SMT solver). An SMT solver S is a tool for solving an SMT
formula φ automatically. We distinguish the following cases:

1 Theory T can be a combination of several sub-theories. This is realized through lazy SMT, an
approach where decision procedures of separate theories share equalities [37]

15

16 background

• S(φ) = sat if φ is satisfiable

• S(φ) = unsat if φ is unsatisfiable

• S(φ) = unknown if S cannot determine φ’s satisfiability.

Prominent SMT solvers include Z3 [38], CVC4/cvc5 [39, 40], Yices [41],
MathSat [42], OpenSMT [43], SMTInterpol [44], AltErgo [45], Boolector [30],
and STP [46]. Among the solvers, Z3 and CVC4/cvc5 are the most powerful
and widely used SMT solvers. Different from all others, they support all
of SMT’s theories while the others specialize in a few theories and logics.
Hence, Z3 and CVC4/cvc5 are complicated pieces having 505,829 and
627,830 lines of mostly C++ code, respectively.

2.1.1 SMT-LIB Initiative, Language, and Benchmarks

SMT-LIB is an initiative to standardize input language and benchmarks
for SMT solvers. The SMT-LIB language is an expressive LISP dialect
for representing SMT formulas. Its most common commands include:
"declare-const" to declare a variable, "assert" to realize the formula, and
"check-sat" to query the satisfiability of asserted constraints, "get-model" to
retrieve the model for satisfiable formulas and return an error otherwise.
Consider the following examples to see how SMT formulas are realized:

φ = ∀a ∈ Z ∃b ∈ Z 2 · b = a ⇝

(assert (forall ((a Int))

(exists ((b Int))

(= (* 2 b) a))))

(check-sat)

SMT-LIB has many features including let bindings, algebraic data types,
etc. We restrict ourselves to the aforementioned, basic subset of SMT-LIB.
For more details including precise formal background, syntax, and seman-
tics, we refer to the SMT-LIB standard v2.6 [47]. SMT-LIB also provides a
large-scale benchmark suite subdivided by logic and mode (sequential or
incremental). For the logics, an empty prefix indicates quantified formulas,
QF represents quantifier-free, and suffixes indicate the theory (combination).
For example:

QF_SLIA = quantifier-free strings and linear arithmetic

In sequential mode, formulas have one "check-sat" whereas in incremental
mode, there are multiple solver queries. There are currently 438,631 non-
incremental and 44,333 incremental benchmarks including 84 logics.

2.2 automated software testing 17

2.1.2 Applications in Academia and Industry

SMT solvers are important foundations for academic research, including
symbolic execution [8, 48], program synthesis [10], solver-aided program-
ming [11], and program verification [12, 13]. Besides these, SMT solvers
have also been used for neural network verification [15], type inference [49],
and for assisting interactive theorem provers such as Coq and Isabelle [50,
51]. In industry, applications include Microsoft’s symbolic execution engine
SAGE [52]; SecGuru [18], their tool for verifying network policies; AdaCore
Spark [17] for verifying cyber-physical systems; and Zelkova, Amazon Web
Services’ tool for verifying access policy properties [16, 53].

2.2 automated software testing

This section first gives basic background on software testing and then
specifically on testing SMT solvers.

2.2.1 Test Generation and Oracle Problem

The overarching goal of automated software testing is to increase software
reliability and performance. There are two key problems to achieve this.

Definition 2.2.1 (Test generation & oracle problem). The test generation
problem is to determine how to fabricate suitable test inputs. The oracle
problem is to determine how to validate program outputs

Test generation can be mutation-based or generation-based. Mutation-
based testing fabricates test inputs by modifying existing inputs, called seeds.
Generation-based testing fabricates test inputs from scratch, e.g., through
grammars or models. Oracles can be differential or metamorphic. Differ-
ential oracles compare multiple implementations of the same algorithm.
Metamorphic oracles compare a single implementation using metamorphic
relations, i.e., properties defining how the program output changes when its
input is transformed in a specific way. A tester is an algorithm that solves
the test generation and oracle problem. A testing campaign is a continuous
effort to identify bugs using a tester. Code coverage is a metric to describe
the sufficiency of testing. Line coverage, function coverage, and branch
coverage are the most commonly used coverage notions.

18 background

Bugs in SMT solvers

Reliability Performance

Reliability bugs

Soundness Inv. Model

Crash

Performance bugs

Incompleteness Hangs

Figure 2.1: Taxonomy of bugs in SMT solvers. The bugs in SMT solvers consist
of reliability and performance bugs. Reliability break down into
soundness, invalid model, and crashes. Performance bugs in turn
divide into incompleteness and hangs.

2.2.2 Bug Types in SMT Solvers

With a background in software testing, we now address SMT solver testing:
(1) bug types, (2) bug reduction, and (3) bug de-duplication.

Definition 2.2.2 (Bug vs bug trigger). A bug is a unique issue in the program
under test. A bug trigger is an input that triggers a particular bug. Multiple
bug triggers can point to the same bug.

We distinguish between two supertypes of bugs in SMT solvers: Reliabil-
ity and performance bugs, each with its subtypes (see Figure 2.1).

Definition 2.2.3 (Reliability bugs). Formula φ triggers

• a soundness bug if S(φ) ̸= O(φ).

– a refutation soundnesss bug if S(φ) = unsat and O(φ) = sat

– a solution soundnesss bug if S(φ) = sat and O(φ) = unsat

• an invalid model bug if the model M returned by the solver does not
satisfy φ and does not trigger a soundness bug.

• a crash bug if S throws an assertion violation or a segmentation fault.

2.2 automated software testing 19

where S is an SMT solver under test, and O is a test oracle.

Soundness bugs can have severe consequences on downstream appli-
cations. Refutation soundness bugs are considered the most critical, as
incorrectly returning unsat translates to falsely assuring a property of a
software or system.2 Solution soundness bugs are severe but less severe than
refutation soundness bugs. In practice, however, soundness bugs often have
both refutation and solution triggers. Invalid model bugs are considered
less than soundness and more severe than crash bugs.

Definition 2.2.4 (Performance bugs). Formula φ triggers

• an incompleteness bug: if unexpectedly S(φ) = unknown. We further
distinguish two subtypes:

– regression incompleteness bug:
Sold(φ) = sat/unsat and S(φ) = unknown where Sold is an
earlier version of S

– implication incompleteness bug:
S(φ′) = sat and S(φ) = unknown if φ′ implies φ

S(φ′) = unsat and S(φ) = unknown if φ implies φ′

• hang/performance bug: if the solver unexpectedly does not solve φ

within a given timeout. We call a hang/performance bug a performance
regression if an earlier version of S was able to solve φ.

The severity of performance bugs depends on the logic and SMT solver
developers. Based on our experience the severity is roughly in this order:
performance regressions, incompleteness regressions, performance bugs,
implication incompleteness bugs.

2.2.3 Bug detection, Deduplication, and Reduction

Invalid model and crash bugs are detected by non-zero exit code and
matching patterns on standard output and error. The detection of soundness
bugs for a metamorphic oracle is direct. For a differential oracle, where two
SMT solvers are compared. The solver at fault is detected by validating the
model of the solver that returns sat. If the model is valid then, the bug is
very likely a refutation soundness bug. Otherwise if the model is invalid
then it is very likely a solution soundness bug.

2 Properties are usually formulated as the negations of undesirable states or behaviors.

20 background

When testers detect bugs, their triggers are often sizeable, needing further
reduction before they can be reported to the developers. We use two pro-
gram reducers to that end. We use C-Reduce [54], a generic code reduction
tool, primarily developed for C but also works for the SMT-LIB language.
Besides C-Reduce, we use pydelta [55], a reducer for SMT-LIB.

Multiple bug triggers can point to the same underlying unique bug.
Hence, we need de-duplication. To avoid duplicate bug reports on the
GitHub issue trackers, we de-duplicate the bugs as follows. Crash bugs are
either assertion violations or segmentation faults. We de-duplicate assertion
violations via the location information (file name and line number) printed
on standard output/error. For soundness and invalid model bugs, we first
categorize the bug triggers by theory. We do this because bug triggers in
different theories are likely to be unique bugs. Then, we select one bug
trigger per theory at a time for reporting. If the bug was fixed, we check the
remaining bug-triggering formulas of the same theory. If one of them still
triggers a bug in the solver, we repeat until none of them triggers anymore.

3
S E M A N T I C F U S I O N

As of early 2019, there was little reason to doubt the reliability of SMT
solvers. Z3 and CVC4, the two most popular and widely used solvers, had
been developed for over a decade, and they had few known soundness
issues. 1 As a result, Z3 and CVC4 were regarded as mature and were
widely trusted. This chapter introduces Semantic Fusion, a novel testing
methodology, which challenged the existing trust in the solvers. The results
of our testing were surprising and had a significant impact on the field.

3.1 illustrative examples

This section illustrates two instantiations of Semantic Fusion: (1) Sat fusion
fuses a pair of satisfiable formulas into a satisfiable formula, and, (2) Unsat
fusion fuses a pair of unsatisfiable formulas into an unsatisfiable formula.

sat fusion Sat fusion combines two satisfiable formulas into a sat-
isfiable formula. Sat fusion can be described by the following steps: (1)
Formula Conjunction, (2) Variable Fusion, and (3) Variable Inversion. Con-
sider the formulas φ1 and φ2 in Figure 3.1. The SMT-LIB code represents
the following formulas:

φ1 = (x = −1) ∧ (w = (x = −1)) ∧ w

φ2 = (v = (y ̸= −1)) ∧ (v→ false) ∧ (¬v→ (y = −1))

Formula φ1 is satisfiable since assigning x = −1 and w = true satisfies
both conjuncts. Formula φ2 is also satisfiable since we can set y to −1 and
v to false, which satisfies the formula. In the following, we detail steps 1-3.

step 1 : formula conjunction : We conjoin formula φ1 with formula
φ2 and obtain φ1 ∧ φ2 as a result. In the SMT-LIB format, this conjunc-
tion is realized by merging variable declaration and assert blocks.

1 The few existing soundness issues at the time mostly manifested in the theory of Strings which
was considered unstable. Besides these, soundness issues in Z3 and CVC4 were rare.

21

22 semantic fusion

; phi1

(declare-fun x () Int)

(declare-fun w () Bool)

(assert (= x (- 1)))

(assert (= w (= x (- 1))))

(assert w)

(check-sat)

; phi2

(declare-fun y () Int)

(declare-fun v () Bool)

(assert (= v (not (= y (- 1)))))

(assert (ite v false (= y (- 1))))

(check-sat)

Figure 3.1: Formulas φ1 and φ2 in the SMT-LIB format. Shaded: variables to be
replaced by inversion terms.

step 2 : variable fusion : We introduce a fresh variable z to fuse the
integer variable pairs x in φ1 and y in φ2. We define a fusion function:
f (x, y) = x · y and construct an equation z = f (x, y). The choice of
the fusion function f is determined by the type of the fused variables
(c.f. Section 3.2.1). We fuse the occurrences of variables x and y.

step 3 : variable inversion : We dissolve the equation z = f (x, y) to
rx(y, z) = z div y and ry(x, z) = z div x, where rx and ry are called
inversion functions and div denotes the integer division. The purpose
of the inversion functions is to recover the original values of x and y.
The inversion function rx(y, z), for example, recovers x by a term that
only depends on y and z. We then randomly replace free occurrences
of x by rx(y, z) and free occurrences of y by ry(x, z). The formula φsat
is by construction satisfiable. The code of φsat is shown in Figure 3.2.

Why is φsat satisfiable? Intuitively, because we can construct a model for φsat
from models for φ1 and φ2. Let M1 be a model for φ1 and M2 be a model
for φ2. We construct M for φsat with M = M1 ∪M2 ∪ {z 7→ M1(x) ·M2(y)}
(see Section 3.2 for details). Formula φsat in Figure 3.2 is a real case. It
triggered a soundness bug in CVC4, which made CVC4 incorrectly report
unsat on φsat. We reported this issue to the GitHub CVC4’s issue tracker.
As per the developers, this was a regression introduced by recent code
changes, and they promptly fixed the bug.

unsat fusion Unsat fusion combines two unsatisfiable formulas into
an unsatisfiable formula. We describe the idea behind Unsat fusion in four
steps: (1) Formula Disjunction, (2) Variable Fusion, (3) Variable Inversion,
and (4) Adding Fusion Constraints. While steps (1), (2), and (3) are similar

3.1 illustrative examples 23

; CVC4 #3413

(declare-fun v () Bool)

(declare-fun w () Bool)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

; phi1 part

(assert (= (div z y) (- 1)))

(assert (= w (= x (- 1))))

(assert w)

; phi2 part

(assert (= v (not (= y (- 1)))))

(assert (ite v false (= (div z x) (- 1))))

(check-sat)

Figure 3.2: Fused formula φsat triggering a soundness bug in CVC4.

to those in Sat fusion, Unsat fusion needs an additional fourth step to
ensure the unsatisfiability of the fused formula. Consider the formulas φ3
and φ4 in Figure 3.3:

φ3 = ((1.0 + x) + 6.0) ̸= (7.0 + x)

φ4 = (0 < y < v ≤ w) ∧ (w/v < 0)

Formula φ3 is trivially unsatisfiable. Formula φ4 is unsatisfiable, since
the left part of the conjunction requires both w and v to be non-negative
but the right part requires w and v to be of opposite signs. First, we
disjoin the two formulas. We then again choose a pair of free variables in
each formula, e.g., variable x in φ1 and variable y in φ2, and introduce a
fresh variable z and fusion function f (x, y) = x · y with z = f (x, y). We
dissolve the equation z = f (x, y) to inversion functions rx(y, z) = z/y and
ry(x, z) = z/x, and randomly substitute the first occurrence of x by rx(y, z)
and both occurrences of y by ry(x, z).

step 4 : add fusion constraints : We add z = f (x, y), x = rx(y, z)
and y = ry(x, z) to the fused formula. We call them fusion constraints.
Since random substitutions may render the fused formula satisfiable,
we need the fusion constraints to ensure that rx and ry recover x and
y (see Section 3.2 for details). The SMT-LIB code of the resulting fused
formula is shown in Figure 3.4.

24 semantic fusion

; phi3

(declare-fun x () Real)

(assert (not (= (+ (+ 1.0 x) 6.0)

(+ 7.0 x))))

(check-sat)

; phi4

(declare-fun y () Real)

(declare-fun w () Real)

(declare-fun v () Real)

(assert (and (< y v) (>= w v)

(< (/ w v) 0) (> y 0)))

(check-sat)

Figure 3.3: Formulas φ3 and φ4 in the SMT-LIB format. Shaded: variables to be
replaced by inversion terms.

; Z3 #2391

(declare-fun v () Real)

(declare-fun w () Real)

(declare-fun x () Real)

(declare-fun y () Real)

(declare-fun z () Real)

(assert (or

(not (= (+ (+ 1.0 (/ z y)) 6.0) ; phi3 part

(+ 7.0 x)))

(and (< (/ z x) v) (>= w v) ; phi4 part

(< (/ w v) 0) (> (/ z x) 0))))

(assert (= z (* x y))) ; fusion constraint

(assert (= x (/ z y))) ; fusion constraint

(assert (= y (/ z x))) ; fusion constraint

(check-sat)

Figure 3.4: Fused formula φunsat of φ3 and φ4 triggering a soundness bug in Z3

The fused formula φunsat in Figure 3.4 has triggered a soundness bug
in Z3, i.e., Z3 reports sat on φunsat, which is incorrect since the formula
is unsatisfiable by construction. This bug is only triggered by the fused
formula; it cannot be triggered by either of the seed formulas nor by the
disjunction/conjunction of the two seed formulas φ3 and φ4.

3.2 semantic fusion

This section presents Semantic Fusion and how we apply it to stress-testing
SMT solvers. We present formal definitions for Sat, Unsat, and Mixed fusion

3.2 semantic fusion 25

along with proofs, exemplary fusion and inversion functions, and details
on YinYang’s implementation.

definitions We consider first-order logic formulas of the satisfiabil-
ity modulo theories (SMT). For such a formula φ, we denote the set of
free variables by vars(φ). A substitution of a variable x in vars(φ) by an
expression e is denoted by φ[e/x]. A model M for φ is a function that maps
all free variables x1, · · · xn ∈ vars(φ) to values in their respective domains
such that φ[M(x1)/x1, · · · , M(xn)/xn] simplifies to true. The model count
of a formula φ is C(φ) = |{M | M |= φ}|. Formula φ is satisfiable if
C(φ) ≥ 1 and unsatisfiable otherwise. φ[e/x]R denotes the formula where
some of the occurrences of x (possibly none) in φ are replaced by e. It holds
C(φ[e/x]) ≤ C(φ[e/x]R).

The key idea behind Semantic Fusion is to combine two seed tests into
a new test that fuses the structures of its ancestors. Applying this to two
formulas φ1 and φ2 of same satisfiability.

Definition 3.2.1 (Fusion function). Let φ1 and φ2 be formulas, x in vars(φ1),
and y in vars(φ2). Let further z be a fresh variable z /∈ vars(φ1) ∪ vars(φ2).
We define

z := f (x, y)

The function f is called a fusion function and z is called a fusion variable.

Intuitively, fusion functions act as anchors in the seed formulas φ1 and φ2
connecting the variables x and y in interesting ways. To recover the original
values of x and y, we introduce inversion functions.

Definition 3.2.2 (Inversion function). Let φ1 and φ2 be formulas and f be a
fusion function. For x ∈ vars(φ1), y ∈ vars(φ2) and z = f (x, y), we define

x = rx(y, z) y = ry(x, z)

functions rx and ry are called inversion functions.

As an example fusion function, consider f (x, y) = x + y. The correspond-
ing inversion functions for x and y are: rx(y, z) = z− y, and ry(x, z) = z− x.
We elaborate on choices for fusion and inversion functions in detail later.
The following proposition shows that fusing two satisfiable formulas leads
to a fused formula of known satisfiability.

26 semantic fusion

3.2.1 Sat Fusion

We next present a proposition that shows how we fuse two satisfiable
formulas into a satisfiable formula.

Proposition 3.2.1 (Sat fusion). Let φ1 and φ2 be satisfiable formulas with
vars(φ1) ∩ vars(φ2) = ∅. Let further x in vars(φ1) and y in vars(φ2) be vari-
ables. Then, φsat = φ1[rx(y, z)/x]R ∧ φ2[ry(x, z)/y]R is satisfiable.

Proof. Let M1 and M2 be models for φ1 and φ2, respectively. We construct
a model M for φsat as follows:

M(v) = M1(v), for v ∈ vars(φ1)

M(v) = M2(v), for v ∈ vars(φ2)

M(z) = f (M1(x), M2(y))

Since x = rx(y, z) by Definition 3.2.2, M(x) = M(rx(y, z)). Thus, via
structural induction we have M(φ1[rx(y, z)/x]R) = M(φ1). By M’s con-
struction, M(φ1) = M1(φ1), thus M |= φ1[rx(y, z)/x]R. Similarly, M |=
φ2[ry(x, z)/y]R), and hence M |= φsat.

3.2.2 Unsat Fusion

Proposition 3.2.1 enables us to fuse two satisfiable formulas and obtain
a satisfiable formula as a result. We would also like to fuse unsatisfiable
formulas into an unsatisfiable formula. However, we cannot simply fuse
two unsatisfiable formulas using Proposition 3.2.1 as the following coun-
terexample shows. Consider the two unsatisfiable formulas

φ1 = x > 0∧ x < 0 φ2 = y ̸= y

with the fusion function z = x + y. If we replace the shaded occurrence of
x by y− z and y by x− z, we get the following formula:

(x > 0) ∧ (z− y < 0) ∧ (z− x ̸= y)

This is a satisfiable formula, e.g., any assignments for x, y and z that satisfy
x > 0 and y > z realize a model. The problem here is that we can freely
choose z that does not necessarily preserve z = f (x, y). To prevent this,
we add the constraint z = f (x, y) to the formula. For fusing unsatisfiable
formulas, we disjoin the formulas, since this is likely to increase the effort
of SMT solvers to prove the formula unsatisfiable.

3.3 fusion and inversion functions 27

Proposition 3.2.2 (Unsat fusion). Let φ1, φ2 be unsatisfiable formulas with
vars(φ1) ∩ vars(φ2) = ∅. Let further x ∈ vars(φ1), y ∈ vars(φ2) be variables.
Then, the formula

φunsat = (φ1[rx(y, z)/x]R ∨ φ2[ry(x, z)/y]R) ∧ z = f (x, y)

is unsatisfiable.

Proof. Assume the contrary, i.e., φunsat was satisfiable. Then either (or both)
of the following would be satisfiable:

φ1[rx(y, z)/x]R ∧ z = f (x, y)

φ2[ry(x, z)/y]R ∧ z = f (x, y)

Say φ1[rx(y, z)/x]R ∧ z = f (x, y) were satisfiable. The formula φ1[rx(y, z)/x]R ∧
z = f (x, y) is equivalent to the formula φ1[rx(y, z)/x]R[f (x, y)/z] ∧ z =
f (x, y), which, by Definition 3.2.2, is equivalent to φ1 ∧ z = f (x, y). This
contradicts the assumption, i.e., the unsatisfiability of φ1. The case for
φ2[ry(x, z)/y]R ∧ z = f (x, y) is symmetric.

3.2.3 Mixed Fusion

Proposition 3.2.2 enables to fuse two unsatisfiable formulas into an unsatisfi-
able formula and complements Proposition 3.2.1. The following proposition
shows how to fuse a formula pair of mixed satisfiability i.e., when φ1 is
satisfiable and φ2 is unsatisfiable without loss of generality.

Proposition 3.2.3 (Mixed fusion). Let φ1 be a satisfiable and φ2 be an un-
satisfiable formula with vars(φ1) ∩ vars(φ2) = ∅. Let further x ∈ vars(φ1),
y ∈ vars(φ2) be variables. Then:

φmixed-sat = φ1[rx(y, z)/x] ∨ φ2[ry(x, z)/y] is satisfiable; and

φmixed-unsat = φ1[rx(x, z)/x] ∧ φ2[ry(x, z)/y] ∧ z = g(x, y) is unsatisfiable.

The proof for Proposition 3.2.3 can be found in Appendix A.1.

3.3 fusion and inversion functions

This section details the exemplary fusion and inversion functions (see
Figure 3.5), and describes the process of designing fusion functions.

28 semantic fusion

Type Fusion Function Variable Inversion Functions ID

rx ry

Int x + y
x + c + y
x ∗ y
c1 ∗ x + c2 ∗ y + c3

z− y
z− c− y
z div y
(z− c2 ∗ y− c3) div c1

z− x
z− c− x
z div x
(z− c1 ∗ x− c3) div c2

1
2
3
4

Real x + y
x + c + y
x ∗ y
c1 ∗ x + c2 ∗ y + c3

z− y
z− c− y
z/y
(z− c2 ∗ y− c3)/c1

z− x
z− c− x
z/x
(z− c1 ∗ x− c3)/c2

5
6
7
8

String x str++ y
x str++ y
x str++ c str++ y

str.substr z 0 (str.len x)
str.substr z 0 (str.len x)
str.substr z 0 (str.len x)

str.substr z (str.len x) (str.len y)
str.replace z x ""
str.replace (str.replace z x "") c ""

9
10
11

Figure 3.5: Fusion functions with their corresponding variable inversion func-
tions categorized by types. The coefficients c1, · · · , c3 are randomly
chosen, and div denotes integer division.

exemplary fusion functions Let us consider the Int and Real cate-
gories. The first two fusion and inversion functions in these categories are
based on addition/subtraction and multiplication/division. When division
and multiplication of variables are used as function and inversion func-
tions, a formula in linear logic might become non-linear. This is because we
replace free variable occurrences with inversion functions that include the
division operator. Another inversion function for real and integer arithmetic
is c1 ∗ x + c2 ∗ y+ c3. The intuition behind c1 ∗ x + c2 ∗ y+ c3 is to synthesize
arbitrary polynomial combinations of the variables x and y with c1, · · · , c3
being random coefficients. Let us consider Strings next. In the first row of
the String category, we define z as the concatenation of the two strings x and
y. Say x = "foo" and y = "bar", then z = x str++ y = "foobar". We retrieve
x by the substring of z from 0 to |x| and for y the substring from |y| to the
end of z. Another way to retrieve y is to use the replace function instead of
substring. The expression str.replace z x "" denotes the replacement of the
first occurrence of x in z by the empty string "", which results in "bar". In
addition, we can insert a random string c into x str++ y by x str++ c str++ y
to make the fusion function more complex, and then retrieve y by replacing

3.4 the yinyang tool 29

x and c with "" sequentially. Semantic Fusion is not restricted to these fusion
and inversion functions of Figure 3.5. A richer set of fusion and inversion
functions can be designed based on Definitions 3.2.1 and 3.2.2.

designing fusion functions The key idea behind all fusion func-
tions is to construct an equation based on a pair of free variables of two seed
formulas and then use the inversion functions to retrieve the original values
of the fused variables. This way, we link the structures of seed formulas in
a nontrivial and random manner. To design such functions, we began with
arithmetic following the natural mathematical intuitions. We then translated
such intuitions to other theories such as strings and booleans. A necessary
condition is that f is invertible and the inverses with respect to x and y
can be represented by SMT-LIB code for the inversion functions. We have
generally favored simple, short fusion functions over complicated ones to
guarantee correctness. However, more complicated fusion functions may be
designed and verified with an SMT solver.

3.4 the yinyang tool

Based on Semantic Fusion, we designed and engineered the bug detection
tool YinYang to stress-test SMT solvers.

algorithm Algorithm 1 presents a parameterized algorithm of YinYang.
The main procedure takes the oracle of the seed formulas O ∈ {sat, unsat},
SMT solver under test S, and a set of seed formulas seedsO as its inputs.
Each seed in seedsO has the same satisfiability as the oracle O. The sets
of incorrects and crashes are used for collecting soundness and crash bugs,
respectively, and are both initialized to the empty set. The while loop body
is executed until a termination criterion is met, e.g., a timeout or an interrupt
by the user (Line 3). We first randomly choose two formulas φ1, φ2 from
seedsO and pass them to the fuse function along with the oracle O. The
fuse function returns the fused formula φfused (Line 6). Then, we check
whether the SMT solver S has crashed on solving φfused. If so, we have
found a crash bug and will add φfused to crashes. Otherwise, if S does not
crash, we check whether S(φfused) is inconsistent with the oracle O (Line 9).
If so, there is a soundness issue and add φfused to the set incorrects.

Algorithm 2 presents the implementation of the fuse, variable_fusion

function. It takes two seed formulas φ1 and φ2 as its inputs and retrieves
the sets of their free variables vars(φ1) and vars(φ2), respectively. Then,

30 semantic fusion

Algorithm 1 YinYang’s main process
1: procedure YinYang(O, S, seedsO)

2: incorrects← ∅, crashes← ∅

3: while no termination criterion met do

4: φ1 ← random.choice(seedsO)
5: φ2 ← random.choice(seedsO)
6: φfused ← fuse(O, φ1, φ2)

7: if S(φfused) = crash then

8: crashes← crashes∪ {φfused}
9: else if S(φfused) ̸= O then

10: incorrects← incorrects∪ {φfused}

Algorithm 2 Semantic Fusion on two SMT formulas
1: function fuse(O, φ1, φ2)

2: vars(φ1)← get_free_variables(φ1)

3: vars(φ2)← get_free_variables(φ2)

4: T ← random_map(vars(φ1), vars(φ2))

5: φ′1, φ′2 ← variableFusion(T, φ1, φ2)

6: if O = sat then

7: return φ′1 ∧ φ′2
8: else

9: φ′ ← φ′1 ∨ φ′2
10: for (z, x, y) ∈ T do

11: φ′ ← φ′ ∧ (z = f (x, y))

12: return φ′

13: function variableFusion(T, φ1, φ2)

14: φ′1 ← φ1 φ′2 ← φ2

15: for (z, x, y) ∈ T do

16: φ′1 ← φ′1[rx(y, z)/x]R
17: φ′2 ← φ′2[ry(x, z)/y]R

18: return φ′1, φ′2

3.4 the yinyang tool 31

seed001.smt2

seed003.smt2
seed002.smt2

seed004.smt2
…

Parser

Free variables

(declare-fun a1 () Int)

…

(declare-fun b1 () Int)
(declare-fun a2 () Int)
(declare-fun b2 () Int)

Seed files Fusion functions

(= a (+ a1 a2)), (- a a1), (- a a2)
(= b (+ b1 b2)), (- b b1), (- b b2)

SubstitutesAbstract Syntax Tree

FusedFormula.smt2Oracle SMT Solvers

…

Figure 3.6: The YinYang framework schematically: the seed formulas of known
oracle get parsed to an AST representation. YinYang reads the fusion
functions and inversion functions from a configuration file. Out of
these, the substitute triplets are generated which are used for fusion.

we create random triplets T, for (z, x, y) ∈ T where x ∈ vars(φ1) and
y ∈ vars(φ2), and z is the fresh variable. In the variable_fusion function,
we substitute randomly chosen occurrences of x in φ1 and y in φ2 by the
inversion function terms rx(y, z) and ry(x, z) from Figure 3.5. If oracle O is
sat, we perform Sat fusion (Proposition 3.2.1) and return the conjunction
of φ′1 and φ′2 directly (Line 12). If oracle O is unsat, we perform Unsat
fusion (Proposition 3.2.2), i.e., we disjoin φ′1 and φ′2, and add a fusion
constraint for each triplet (x, y, z) ∈ T (Lines 15-17) and return the result. In
principle, YinYang guarantees the absence of false positives, given that the
seed formulas seedsO are correctly labeled. In practice, however, the solvers
may report unknown, which could be either seen as a crash or ignored.

implementation of yinyang After the first publication of Semantic
Fusion at PLDI 2020, we re-built YinYang in a total of 12, 117 lines of Python
3.7 code. We reconstructed the architecture of YinYang and added several
features. The framework is open-sourced on GitHub. 2 Figure 3.6 shows
the framework of YinYang. As inputs, the framework takes seed files of the

2 https://github.com/testsmt/yinyang

https://github.com/testsmt/yinyang

32 semantic fusion

same satisfiability and one or more SMT solvers under test. The seed files
are parsed to an abstract syntax tree and free variables are pre-computed.
The framework reads a configuration file of which it generates the 3-tuple
to perform the substitutions. The 3-tuples consist of the fusion function
and the two inversion functions, each formulated as an equation with
hard-coded variables x, y, z. By randomly substituting free variables in
the abstract syntax tree and concatenating two formulas, we finally get
the fused formula. If an SMT solver reports a different satisfiability with
the seeds, a bug will be reported. Users can customize the command-line
interface of YinYang and also specify custom fusion and inversion functions.
YinYang accepts SMT solver binaries as test targets and obtains the solving
results from the stdout stream, which makes YinYang compatible with most
SMT solvers. When there are multiple fusion/inversion function choices for
f , rx and ry, YinYang makes a random choice. We designed a DSL similar
to the SMT-LIB language for configuring fusion functions. The following
code shows the syntax for realizing fusion function 2 :

#begin
(declare-const x Int)(declare-const y Int)
(declare-const z Int)(declare-const c Int)
(assert (= z (+ (+ x y) c)))
(assert (= x (- (- z y) c)))
(assert (= y (- (- z x) c)))
#end

In our DSL, each triplet of a fusion and two inversion functions is sur-
rounded by a "#begin-#end" block. Variables x,y, and z are hard-coded to
represent free variables of the first and second seed and the new variable
in the fusion function respectively. They are all declared as three constants.
An additional constant "c" represents a randomly chosen constant. The first
assert represents the equation z := f (x, y), the second and third represent
the equations x = rx(y, z) and y = ry(x, z) respectively. YinYang will read
the fusion function from the template while fusing the formulas.

3.5 empirical evaluation

This section presents the details of our extensive evaluation of YinYang,
demonstrating the practical effectiveness of the Semantic Fusion method-
ology. Between June and October 2019, we ran YinYang to test the default
arithmetic and string solvers of Z3 and CVC4. We chose Z3 and CVC4

since they (1) are popular and widely used in academia and industry, (2)
support a rich set of logics, and (3) adopt an open-source development

3.5 empirical evaluation 33

model. During our testing period, we filed numerous bugs on their GitHub
issue trackers. This section describes the outcome of our testing effort.

result summary and highlights

• Many confirmed bugs: In four months, YinYang found 62unique bugs in
Z3 and CVC4. Out of these, 57 were already fixed by the developers.

• Many soundness bugs: YinYang found 34 soundness bugs in Z3 and 5

in CVC4. These represent 16% of the reported Z3 soundness bugs of
the 2014 - 2019 and 11% of the reported CVC4 soundness bugs 2011 -
2019. Some of the bugs affect multiple historical release versions.

• Bugs in various logics: YinYang found bugs in various logics, e.g.,
QF_NRA, QF_NIA, NRA, NIA, QF_S, and QF_SLIA. Most of the
bugs in Z3 were found QF_SLIA (20) and NRA (16) and while most
of the bugs in CVC4 were found in QF_S (5).

3.5.1 Evaluation Setup

hardware setup Since July 2019, YinYang tested Z3 and CVC4 on three
machines. The first machine is equipped with an Intel Xeon CPU E5-2680

28-core processor and 256GB RAM. The second machine is equipped with
an Intel Core i7-8700 6-core processor and 16GB RAM. The third machine
has an AMD Ryzen Threadripper 2990WX processor with 32 cores and
32GB RAM. The OS on all three machines is Ubuntu 18.04 64-bit.

test seed formulas Figure 3.7 shows the formula counts of the re-
spective benchmarks that we used. The majority of the seed formulas come
from the SMT-LIB benchmark suite maintained by the SMT-LIB Initia-
tive [47]. We chose the SMT-LIB benchmarks as our test seeds since they
make the largest collection of SMT formulas in the SMT-LIB 2.6 language.
The SMT-LIB benchmarks are also used in the SMT Competition. There-
fore, these formulas are unlikely to trigger bugs in Z3 and CVC4 since
they have already been run on them. This helps us isolate the effects of
Semantic Fusion. We choose the following logics: LIA, LRA, NRA, QF_LIA,
QF_LRA, QF_NRA, QF_SLIA, and QF_S. L represents linear, N represents
non-linear, IA represents integer arithmetic, RA represents real arithmetic,
QF represents quantifier-free, and S represents string logic. Besides the
SMT-LIB benchmarks, we also used the benchmarks from StringFuzz [56].

34 semantic fusion

Benchmark #UNSAT #SAT Total

LIA 203 139 342

LRA 1,316 714 2,030

NRA 3,798 - 3,798

QF_LIA 1,191 1,318 2,509

QF_LRA 384 522 906

QF_NRA 4,660 4,751 9,411

QF_SLIA 5,492 22,657 28,149

QF_S 6,390 12,561 18,951

StringFuzz 4,903 4,098 9,001

Figure 3.7: The formula counts of the respective benchmarks.

The StringFuzz benchmarks only includes formulas of QF_S logic. They do
not trigger any bugs in the latest versions of Z3 and CVC4. We preprocessed
all formulas (from the SMT-LIB benchmarks and StringFuzz) with Z3 to
subdivide them into a satisfiable and an unsatisfiable set. We cross-checked
with CVC4 to ensure the correctness of these ground truths. In total, we
obtained 75,097 seed formulas, 46,760 of which are satisfiable and 28,337
are unsatisfiable. We give detailed statistics on the test seed formulas in
Figure 3.7. There is only one available satisfiable formula for NRA logic in
the SMT-LIB benchmark, hence we omit this logic.

smt solvers We selected the SMT solvers Z3 and CVC4 for the evalua-
tion of YinYang. We chose them because:

• Z3 and CVC4 are the two most popular SMT solvers. They are mature
and widely used in academia and industry.

• Z3 and CVC4 have state-of-the-art performance. Both regularly rank
high in the annual SMT competition.

• Z3 and CVC4 support most of the features and logics in the SMT-
LIB standard, while the other SMT solvers only partially support the
SMT-LIB standard.

• Z3 and CVC4 have open-source issue trackers on GitHub, and their
developers are active and responsive. This helps our testing effort as
we can quickly get feedback, and filed bugs are fixed promptly.

3.5 empirical evaluation 35

For CVC4, we use its --strings-exp option to enable support for the string
logic and default configuration for the other logics. For Z3, we use both
the default string solver z3str3.3 We compiled both solvers with assertions
enabled. Both solvers are compiled with assertion enabled.

bug reduction When a bug is found, we reduce the fused formula to a
small enough size for reporting. We use C-Reduce [54], a C code reduction
tool, which also works for the SMT-LIB language. We implemented a pretty
printer to help with the bug reduction process, i.e., when C-Reduce has
converged to a still very large formula or hanged. The pretty-printer makes
modifications to the AST of a formula, i.e., flattens nestings of the same
operator, removes additions and multiplications with neutral elements, and
returns the modified formula in a human-readable format.

3.5.2 Quantitative Evaluation

We guide our quantitative evaluation by the following five consecutive
research questions:

RQ1: How many bugs can YinYang find?

RQ2: How significant are the bug-finding results?

RQ3: Can YinYang improve code coverage?

RQ4: Is Semantic Fusion necessary for finding bugs?

RQ5: Which fusion functions caused YinYang’s soundness bug findings?

RQ1: How many bugs can YinYang find?

From July 2019 to October 2019, we extensively tested Z3 and CVC4 with
YinYang. YinYang usually reports many bug-triggering test cases in one
testing round. To avoid duplicate bug reports, we always use the trunk
versions of the solvers for testing. Once the developers have fixed a bug, we
validate the fixed version on the rest of the formulas that triggered bugs in
the previous testing round. If the solvers passed all formulas and no bug
was triggered, we started a new testing round. During our four months of
testing, YinYang generated around 800 million test formulas. On average,
YinYang generates 41.5 test formulas per second when run in the single-
threaded mode. Figure 3.8a shows the bug counts categorized by reported,

3 smt.string_solver=z3str3

36 semantic fusion

Status Z3 CVC4 Total

Reported 62 14 76

Confirmed 51 11 62

Fixed 48 9 57

Duplicate 4 1 5

Won’t fix 1 1 2

(a)

Type Z3 CVC4 Total

Soundness 34 5 39

Crash 12 5 17

Invalid model 3 0 3

Other 2 1 3

(b)

Logic Z3 CVC4 Total

QF_SLIA 20 5 25

NRA 16 0 16

QF_S 8 3 11

QF_NIA 2 3 5

QF_NRA 4 0 4

NIA 1 0 1

(c)

Figure 3.8: (a) Status of the reported bugs in Z3 and CVC4, (b) types of the
confirmed bugs in Z3 and CVC4, and (c) affected SMT logics of the
confirmed bugs in Z3 and CVC4.

confirmed, fixed, duplicate, and won’t fix. From the 76 reported bugs, 62
bugs were confirmed by the developers as real bugs and 57 bugs were
fixed. Although we devoted equal testing effort to both solvers, YinYang
found more bugs in Z3 (51 confirmed bugs) and clearly fewer bugs in CVC4

(11 confirmed bugs). Having observed that YinYang can find a significant
number of bugs in Z3 and CVC4, Figure 3.8b shows the bug type overview
of YinYang’s findings. We distinguish the following three types of bugs:

• Soundness bugs: A formula triggers a soundness bug if the solver
reports an incorrect solving result.

• Crash bugs: A formula triggers a crash bug if the solver terminates
abnormally or throws internal errors while processing the formula.

• Performance and unknown bugs: A formula triggers a performance bug
if the solver reports unknown or cannot terminate on a simple formula
and the developers confirm implementation issues.

Overall, the most common bug category is for soundness bugs (34 out of
the 62 confirmed bugs) followed by crash bugs (12 out of the 62 confirmed
bugs). This is consistent for both solvers, which shows the strength of
YinYang in finding soundness bugs. Although we designed YinYang to
target soundness and crash bugs, we also considered performance bugs.
We have found these bugs during the reduction process of C-Reduce. As
performance bugs are less interesting than soundness and crash bugs, we
stopped reporting performance bugs after several bug reports and solely
focused on soundness and crash bugs subsequently. Figure 3.8c shows the
logic distribution among the confirmed bugs. In Z3, we found most of the

3.5 empirical evaluation 37

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

63

28
221815

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2

9

1

9

3
1

2

13

Figure 3.9: Soundness bugs in Z3 (left) and CVC4 (right) per year.

4
.5

.0
4
.6

.0
4
.7

.1
4
.8

.1
4
.8

.3
4
.8

.4
4
.8

.5
tr

un
k

8
5 5 5 5

8
10

24

1
.5

1
.6

1
.7

tr
un

k

2
1

2

5

Figure 3.10: Soundness bug finding affecting Z3 (left) and CVC4 (right).

bugs in QF_SLIA (20) followed by NRA (16) and QF_S (8). In CVC4, we
found most of the bugs in QF_SLIA (5) followed by QF_NIA (3).

RQ2: How significant are the bug-finding results?

To approach this question, we consider the most critical bugs in SMT
solvers, i.e., the soundness bugs. Soundness bugs in SMT solvers are rare
and heavily penalized when detected in the SMTComp competitions. We
have conducted a study on soundness bugs based on the GitHub issue
trackers of Z3 and CVC4. The results are shown in Figure 3.9. For Z3,
we considered April 2015 as the start date, right after Z3 was released
on GitHub. For CVC4, we have data since July 2010 as CVC4’s previous
Bugzilla issue tracker was migrated to GitHub. Z3 supports many logics
and has become popular on GitHub. As the end date, we set July 2019.

However, there were only 146 soundness bugs reported on the Z3 issue
tracker from April 2015 to October 2019. For CVC4 this number is even lower.
Since July 2010, there were only 42 soundness bugs. As an intermediate
conclusion to RQ2, we state that YinYang has found a significant number

38 semantic fusion

of the soundness bugs in both Z3 and CVC4. To more deeply understand
the significance of our soundness bug-findings, we studied the influence of
soundness bugs in different releases of Z3 and CVC4. Figure 3.10 shows the
results. We selected all released versions of Z3 and CVC4 that support the
formulas triggering soundness bugs. Z3 4.5.0 was released on November
8, 2016, and CVC4 1.5 was released on July 10, 2017, which means that
YinYang found 8 soundness bugs in Z3 that were latent for 3 years, and 2

soundness bugs in CVC4 that were latent for 2 years. YinYang has found
long-latent bugs missed by solver developers, users, regression testing, and
prior automated testing. This confirms the significance of our bug findings.

RQ3: Can YinYang improve code coverage?

In RQ3, we have observed that the reason for our bug-finding ability is
likely to be variable fusion. Therefore we may ask: What are the unique
features of variable fusion? Do we cover different code inside the SMT solvers? In
this research question, we use code coverage, a standard evaluation metric
for software testing, to understand whether YinYang can cover additional
code inside the SMT solvers. To investigate the coverage improvement of
YinYang, we consider the following steps:

1. Run Z3 and CVC4 on all formulas on each benchmark.

2. Measure the line, function, and branch coverage of the solvers. The
results are labeled as Benchmark.

3. After running Z3 and CVC4 on each benchmark, run YinYang for one
hour in single-threaded mode on each benchmark.

4. Measure the line, function, and branch coverage of the solvers. The
results are labeled as YinYang.

The timeout for the solvers is set to two seconds. For measuring coverage,
Z3 and CVC4 are compiled in debug mode and without optimizations.
The coverage measurement tool is Gcov [57]. Figure 3.11 shows the results.
The numbers represent the percentages (%) of lines (l), functions (f) and
branch (b) covered respectively. The highest coverages are shaded. Since
SMT solvers have large code bases (Z3 has over 436K LOC, CVC4 has
over 238K LOC), 1% line coverage improvement translates to thousands
of additionally covered lines. First, we observe that both Z3 and CVC4

mostly achieve less than 30% line, function and branch coverage. This may

3.5 empirical evaluation 39

LIA LRA
SAT UNSAT SAT UNSAT

l f b l f b l f b l f b
Z3 Benchmark 10.6 14.6 3.4 9.4 13.2 2.8 10.4 14.5 3.3 9.8 13.8 3.1

YinYang 12.0 16.7 3.8 14.5 18.6 4.9 13.4 17.3 4.3 13.3 16.8 4.3

CVC4 Benchmark 14.7 29.1 5.4 15.3 28.9 6.0 14.2 27.3 5.3 12.8 24.9 4.6
YinYang 16.4 31.4 6.2 17.5 31.9 7.2 16.1 30.6 6.4 15.7 29.4 6.2

NRA QF_NRA
SAT UNSAT SAT UNSAT

l f b l f b l f b l f b
Z3 Benchmark - - - 10.6 13.1 3.5 12.0 13.5 4.6 11.3 13.0 4.1

YinYang - - - 11.9 14.8 3.9 13.4 15.3 5.1 12.5 14.5 4.6

CVC4 Benchmark - - - 16.0 30.9 6.2 12.8 22.6 4.7 13.4 22.6 5.0
YinYang - - - 17.9 33.9 7.2 15.2 28.7 5.8 15.7 27.8 6.2

QF_LIA QF_LRA
SAT UNSAT SAT UNSAT

l f b l f b l f b l f b
Z3 Benchmark 11.5 16.3 3.7 13.3 17.6 4.3 7.8 12.6 2.6 7.3 11.1 2.4

YinYang 14.8 19.8 5.1 16.1 20.6 5.5 14.7 18.7 5.2 14.3 17.8 5.2

CVC4 Benchmark 11.0 20.2 3.5 11.6 20.2 3.8 10.7 19.9 3.3 10.6 19.6 3.4
YinYang 12.7 23.8 4.4 12.3 20.9 4.1 13.7 27.2 5.1 12.9 25.6 4.6

QF_SLIA QF_S
SAT UNSAT SAT UNSAT

l f b l f b l f b l f b
Z3 Benchmark 10.2 15.2 3.4 11.5 15.4 4.0 12.5 17.7 4.3 11.8 16.2 4.0

YinYang 10.4 15.5 3.5 13.1 16.9 4.7 12.6 17.8 4.3 12.8 17.0 4.4

CVC4 Benchmark 15.2 25.3 6.8 18.4 32.6 7.4 16.2 28.6 6.5 14.5 26.2 5.6
YinYang 16.2 26.5 7.3 19.6 34.0 8.0 16.6 29.9 6.7 14.8 26.3 5.9

StringFuzz
SAT UNSAT

l f b l f b
Z3 Benchmark 13.4 18.3 4.6 12.7 17.5 4.2

YinYang 13.7 18.4 4.8 13.6 18.3 4.7

CVC4 Benchmark 19.6 36.3 8.2 20.3 35.9 9.1
YinYang 20.0 36.6 8.5 20.8 36.2 9.5

Figure 3.11: Coverage evaluations. The numbers represent the percentage (%) cov-
erage for the corresponding coverage metric. Column l, f, b represent
line coverage, function coverage, and branch coverage respectively.
Higher coverage between Benchmark and YinYang is shaded.

40 semantic fusion

lines functions branches
0

5

10

15

20

25

30

Z3

lines functions branches
0

5

10

15

20

25

30

CVC4

Figure 3.12: Coverage improvement (%) of ConcatFuzz (in gray) and YinYang (in
black) over Benchmark (in white) averaged over all logics.

be explained by the many mutually exclusive features that CVC4 and Z3

support. The main observation is that YinYang can consistently increase the
coverage achieved by the Benchmark. This indicates that YinYang can enhance
benchmark formulas and exercise previously uncovered code. Furthermore,
YinYang can achieve this noticeable coverage improvement in only one hour.

RQ4: Is Semantic Fusion necessary for finding bugs?

This research question investigates whether we can obtain our bug findings
with a simpler approach. As mentioned earlier, Semantic Fusion consists
of two main steps: (1) formula concatenation and (2) variable fusion and
inversion. Step (2) is the core technique of Semantic Fusion. Let ConcatFuzz
be the simple concatenation tool where we solely perform step (1) and
disable step (2), i.e., ConcatFuzz only combines formulas by conjunction (for
satisfiable formulas) and disjunction (for unsatisfiable formulas) without
variable fusion and inversion. To see whether Semantic Fusion is necessary
for triggering bugs, we ran ConcatFuzz on the ancestor seeds of 50 reported
bugs that YinYang found. In only 5 out of 50 cases, ConcatFuzz was able
to retrigger the bug. This indicates that simple formula concatenation is
unable to trigger most of the bugs found by YinYang, which shows the
necessity of the core technique of Semantic Fusion. In addition, we also
repeated the code coverage evaluation of RQ3 to understand the code
coverage difference between ConcatFuzz and YinYang. Figure 3.12 shows
the code coverage of ConcatFuzz and YinYang averaged over all logics. The
results show that both YinYang and ConcatFuzz consistently achieve higher
line, function, and branch coverage than the Benchmark. The coverage

3.5 empirical evaluation 41

improvement of ConcatFuzz over the benchmark, partially explains why
ConcatFuzz can retrigger some of the bugs. However, the results also reflect
that the average code coverage of YinYang dominates ConcatFuzz. YinYang
achieves on average 1.1% more lines (approx. 2,800 lines) in Z3 and 0.3%
(approx. 480 lines) in CVC4, which can partially explain why YinYang can
trigger more bugs than ConcatFuzz. In summary, our results show that
semantic fusion is necessary for YinYang’s effectiveness, and code coverage
and bug count correlate.

RQ5: Which fusion functions caused YinYang’s soundness bug findings?

Having observed that Semantic Fusion is necessary for bug finding, we next
investigate the individual contribution of each fusion function. To that end,
we again used the soundness bugs from RQ1 for which we saved the seeds
and tried to retrigger them. Due to the randomness of Semantic Fusion, not
all soundness bugs can be retriggered in a short time frame. After filtering
out the bugs that cannot stably reproduce within 30 minutes, 20 soundness
bugs remained. For each bug, we then gradually shrank the fusion functions
used in YinYang to a minimal set. The resulting fusion functions in this
minimal set all contribute to finding the corresponding bug. To reduce
fusion functions, we used the following procedure. First, we delete all
fusion functions that are not applied to the seed formulas. These fusion
functions certainly do not contribute to the bug finding. Second, we shrink
the fusion functions with non-linear operators if possible. Non-linear fusion
functions might turn linear formulas into a non-linear formula the logic of
the original seeds. We hence attempted to remove all the unnecessary non-
linear fusion functions to isolate the effects of linear fusion functions. Third,
we shrink the fusion functions with constants. Functions without constants
are special cases of the fusion function with constants. The rationale behind
this is: if the more specific fusion functions still retrigger the bug, then
the corresponding general fusion functions are unnecessary. Finally, we
delete the remaining fusion functions one by one. The resulting set of
fusion functions is locally minimal, i.e., none of the fusion functions can
be removed. Figure 3.13 shows the results of the 20 soundness bugs after
shrinking. We first observe that 6 out of 11 fusion functions contribute
to soundness bug findings (1 3 7 9 10 11). Fusion functions that do
not contribute to any of the bugs are the general cases for integers and
reals (2 4 6) and the real addition (5). Fusion functions 1 3 7 9 10

11 contribute individually, while bugs #2450, #2514 and #2516 have to be

42 semantic fusion

Bug ID Solver Satisfiability Logic of seeds Logic Fusion functions

#2372 Z3 unsat NRA NRA 1

#2391 Z3 unsat QF_LRA QF_NRA 7

#2422 Z3 sat QF_S QF_S 9

#2450 Z3 unsat LRA NRA 1 7

#2483 Z3 unsat NRA NRA 1

#3203 CVC4 unsat QF_SLIA QF_SLIA 1

#2513 Z3 unsat QF_SLIA QF_S 1

#2514 Z3 unsat QF_SLIA QF_SNIA 3 10

#2516 Z3 unsat QF_SLIA QF_SLIA 3 10

#3217 CVC4 unsat QF_SLIA QF_SLIA -

#2530 Z3 unsat NRA NRA 1

#2531 Z3 unsat QF_SLIA QF_S 10

#2533 Z3 unsat QF_SLIA QF_SLIA -

#3272 CVC4 sat QF_SLIA QF_SLIA 10

#2573 Z3 unsat LRA NRA 7

#2613 Z3 unsat QF_SLIA QF_SLIA 11

#3357 CVC4 unsat QF_S QF_S -

#2618 Z3 unsat QF_S QF_S 11

#2632 Z3 sat QF_S QF_S 9

#3412 CVC4 sat QF_SLIA QF_NIA 3

Figure 3.13: Soundness bugs that can be re-triggered from the seeds within 30

minutes. The function IDs in the last column refer to a minimal set
of fusion functions for re-triggering each bug. ’-’ refers to bugs that
could be found without fusion functions.

triggered by a combination of two fusion functions. In 8 out of 20 cases,
string fusion functions were necessary. In 5 out of 20 cases, non-linear
fusion functions were necessary and in 5 out of 20 the linear fusion function
1 was exclusively necessary. As a conclusion, this experiment showed that
the majority of fusion functions are necessary for bug finding, especially
the simple ones for reals and ints and all the string fusion functions.

3.6 selected bugs

This section presents a selection of bugs that we found in CVC4 and Z3.
We have found soundness bugs, segmentation faults, assertion violations,
and performance issues in multiple logics. The original seed formulas φfused
that trigger the bugs are too large to be presented. We therefore present

https://github.com/Z3Prover/z3/issues/2372
https://github.com/Z3Prover/z3/issues/2391
https://github.com/Z3Prover/z3/issues/2422
https://github.com/Z3Prover/z3/issues/2450
https://github.com/Z3Prover/z3/issues/2483
https://github.com/CVC4/CVC4/issues/3203
https://github.com/Z3Prover/z3/issues/2513
https://github.com/Z3Prover/z3/issues/2514
https://github.com/Z3Prover/z3/issues/2516
https://github.com/CVC4/CVC4/issues/3217
https://github.com/Z3Prover/z3/issues/2530
https://github.com/Z3Prover/z3/issues/2531
https://github.com/Z3Prover/z3/issues/2533
https://github.com/CVC4/CVC4/issues/3272
https://github.com/Z3Prover/z3/issues/2573
https://github.com/Z3Prover/z3/issues/2613
https://github.com/CVC4/CVC4/issues/3357
https://github.com/Z3Prover/z3/issues/2618
https://github.com/Z3Prover/z3/issues/2632
https://github.com/CVC4/CVC4/issues/3412

3.6 selected bugs 43

the reduced formulas which we have obtained from bug reduction on the
original bug-triggering formulas.

figure 3 .14a shows an unsatisfiable formula in the string logic QF_S.
The formula has two asserts. The second assertion demands variable
a to be the concatenation of b and c. The first assertion includes a
query on whether c is matched by regex "aa"*. This is conjoined with
a check on whether c equals "0" (see lines 8 to 11). The formula is
unsatisfiable since the two conditions contradict each other. However,
Z3 reports sat on Formula 3.14a, which is incorrect.

figure 3 .14b shows an unsatisfiable formula in the non-linear real arith-
metic logic QF_NRA. Z3 reported sat on this formula and gave the
following incorrect model:

(define-fun e () Real 1.0)
(define-fun f () Real 2.0)
(define-fun a () Real 1.0)
(define-fun b () Real (- 1.0))
(define-fun c () Real 0.0)
(define-fun d () Real 1.0)

This model does not satisfy the formula. It causes conflicts between
two constraints — the first is the constraint on line 10, while the second
is on line 11. According to the SMT-LIB standard, an arbitrary but
consistent value v may be chosen for such division-by-zero predicates.
Thus, the formula is unsatisfiable. However, Z3 reported sat on the
formula. Z3 chose a positive f, and therefore v has to be positive
contradicting line 11.

figure 3 .14c shows an unsatisfiable formula in the string logic QF_S. Z3

incorrectly reported sat on this formula and gave an incorrect model.
The developers made some major changes to fix this bug — 28 files
with 486 additions and 144 deletions were necessary to fix it. The bug
is triggered by incorrect implementations suffixof and prefixof.

figure 3 .14d also shows a formula in the string logic QF_S. The formula
is unsatisfiable but CVC4 incorrectly reported sat on it. The formula
has been reduced from the same original test case as Formula 3.14a
which also triggered a Z3 soundness bug. CVC4 and Z3 both report
sat on the original formula. These two bugs show the benefits of
our approach over differential testing. In this case, differential testing
would not be able to capture these bugs as the results from both

44 semantic fusion

1 (declare-fun a () String)
2 (declare-fun b () String)
3 (declare-fun c () String)
4 (assert (and (str.in.re c
5 (re.* (str.to.re "aa")))
6 (= 0 (str.to.int
7 (str.replace a b
8 (str.at a (str.len a)))))))
9 (assert (= a (str.++ b c)))

10 (check-sat)

(a) Soundness bug in Z3: Z3 returns sat

on this unsatisfiable QF_S formula.
https://github.com/Z3Prover/z3/issues/2618

1 (declare-fun a () Real)
2 (declare-fun b () Real)
3 (declare-fun c () Real)
4 (declare-fun d () Real)
5 (declare-fun e () Real)
6 (declare-fun f () Real)
7 (assert (and (> 0 (- d f))(= d (ite
8 (>= (/ a c) f) (+ b f) f))(> 0 (/ a
9 (/ c e)))(or (= e 1.0) (= e 2.0))

10 (> d 0) (= c 0)))
11 (check-sat)

(b) Soundness Bug in Z3: Z3 reported sat

on this unsatisfiable QF_NRA formula.
https://github.com/Z3Prover/z3/issues/2391

1 (declare-fun a () String)
2 (declare-fun b () String)
3 (declare-fun c () String)
4 (declare-fun d () String)
5 (assert (= a (str.++ b d)))
6 (assert (or (and
7 (= (str.indexof
8 (str.substr a 0
9 (str.len b)) "=" 0) 0)

10 (= (str.indexof b "=" 0) 1))
11 (not (= (str.suffixof "A" d)
12 (str.suffixof "A"
13 (str.replace c c d))))))
14 (check-sat)

(c) Soundness bug in Z3: Z3 reports sat

on this unsatisfiable QF_S formula.
https://github.com/Z3Prover/z3/issues/2513

1 (declare-const a String)
2 (declare-const b String)
3 (declare-const c String)
4 (declare-const d String)
5 (declare-const e String)
6 (declare-const f String)
7 (assert (or (and (= c (str.++ e d))
8 (str.in.re e (re.* (str.to.re "aaa")))
9 (> 0 (str.to.int d)) (= 1 (str.len e))

10 (= 2 (str.len c))) (and (str.in.re f
11 (re.* (str.to.re "aa"))) (= 0
12 (str.to.int (str.replace (str.replace
13 a b "") "a" ""))))))
14 (assert
15 (= a (str.++ (str.++ b "a") f)))
16 (check-sat)

(d) Soundness bug in CVC4 reporting sat

on this unsatisfiable QF_S formula.
https://github.com/CVC4/CVC4/issues/3357

1 (declare-fun a () String)
2 (declare-fun b () String)
3 (assert (= (str.++ (str.substr "1" 0
4 (str.len a)) "0") b))
5 (assert (< (str.to.int b) 0))
6 (check-sat)

(e) Soundness Bug in Z3: This bug has
inspired Z3 developers to implement
new rewrites in Z3.
https://github.com/Z3Prover/z3/issues/4138

1 (declare-fun a () String)
2 (assert (= (str.at (str.substr
3 (str.substr a 1 (- (str.len a) 1)) 1
4 (- (str.len (str.substr a 1 (-
5 (str.len a)))) 1)) 0) "\f"))
6 (check-sat)

(f) Invalid Model Bug in Z3: This bug has
led to a discussion on finding rewrites
automatically via fuzzers.
https://github.com/Z3Prover/z3/issues/4138

Figure 3.14: Selected bugs in Z3 and CVC4 found by YinYang.

https://github.com/Z3Prover/z3/issues/2618
https://github.com/Z3Prover/z3/issues/2391
https://github.com/Z3Prover/z3/issues/2513
https://github.com/CVC4/CVC4/issues/3357
https://github.com/Z3Prover/z3/issues/4138
https://github.com/Z3Prover/z3/issues/4138

3.6 selected bugs 45

1 (declare-fun a () String)
2 (declare-fun b () String)
3 (declare-fun d () String)
4 (declare-fun e () String)
5 (declare-fun f () Int)
6 (declare-fun g () String)
7 (declare-fun h () String)
8 (assert (or (not (= (str.replace
9 "B" (str.at "A" f) "") "B"))

10 (not (= (str.replace "B"
11 (str.replace "B" g "") "")
12 (str.at (str.replace
13 (str.replace a d "") "C" "")
14 (str.indexof "B" (str.replace
15 (str.replace a d "")
16 "C" "") 0))))))
17 (assert
18 (= a (str.++ (str.++ d "C") g)))
19 (assert (= b (str.++ e g)))
20 (check-sat)

(a) Soundness bug in CVC4 reporting sat

on this unsatisfiable QF_SLIA formula.
https://github.com/CVC4/CVC4/issues/3203

1 (declare-fun a () Real)
2 (declare-fun b () Real)
3 (declare-fun c () Real)
4 (declare-fun d () Real)
5 (declare-fun i () Real)
6 (declare-fun e () Real)
7 (declare-fun ep () Real)
8 (declare-fun f () Real)
9 (declare-fun j () Real)

10 (declare-fun g () Real)
11 (assert (or (not (exists ((h Real))
12 (=> (and (= 0.0 (/ b j)) (< 0.0 e))
13 (=> (= 0.0 i) (= (= (<= 0.0 h) (<=
14 h ep))(= 1.0 2.0))))))(not (exists
15 ((h Real)) (=> (<= 0.0 (/ a h)) (= 0
16 (/ c e)))))))
17 (assert (= c (/ c g) g 0))
18 (assert (= ep (/ d f)))
19 (check-sat)

(b) Crash Bug in Z3: This NRA formula
triggers a segmentation fault in Z3.
https://github.com/Z3Prover/z3/issues/2449

Figure 3.15: Ctd. Selected bugs in Z3 and CVC4 found by YinYang.

solvers are the same, but incorrect. The root cause of the bug is a
missed corner case in the str.to.int reduction function for an empty
string. The bug was labeled as major in the CVC4 bug tracker.

figure 3 .14e shows a soundness bug in Z3’s QF_SLIA logic. According
to Z3’s main developer, this bug exposed and an incomplete axiomati-
zation of the string to int conversion function str.to_int. Furthermore,
he said that this bug inspired additional rewrite opportunities in Z3.

figure 3 .14f shows an invalid model bug in Z3’s QF_SLIA logic. A buggy
rewrite rule has caused this bug. The bug also led to an extensive
discussion on mining rewrite rules by fuzzing on GitHub. Z3’s main
developer explained how he could infer a missing rewrite rule from
the bug: From the term (str.substr a 1 (- (str.len a)), which oc-
curs in the bug trigger, he inferred the new rewrite rule (str.substr

x y z) -> "" if z <= 0. The function (str.substr s i n) evaluates to
the longest (unscattered) substring of s of length at most n starting at
position i. Clearly if n is negative, then the result is the empty string.

figure 3 .15a shows an unsatisfiable formula in the QF_SLIA logic. CVC4

incorrectly reported sat on this formula and gave an incorrect model.

https://github.com/CVC4/CVC4/issues/3203
https://github.com/Z3Prover/z3/issues/2449

46 semantic fusion

The root cause for this bug is an unsound formula simplification of
CVC4. The bug is labeled major by the CVC4 developers. They rewrote
the simplification strategy to fix the bug.

figure 3 .15b shows a formula in quantified real arithmetic (NRA). Z3

crashed when solving this formula with the following message:

Failed to verify: m_util.is_numeral(rhs, _k)

[2] 25133 segmentation fault (core dumped)

According to the bug fix of the developer, the root cause for this crash
was an error in the rewriting strategy for the comparison operators
<= and >=. According to the bug-fixing commit, the developer rewrote
the rewrite for less than or equal to (<=) and greater than or equal to (>=)
terms in arithmetic rewriter to fix the bug.

3.7 discussion

We first discuss effectiveness and reception, relate Semantic Fusion to more
recent approaches, and then outline limitations and future work.

effectiveness Our extensive evaluation demonstrates that YinYang can
find many bugs in state-of-the-art SMT solvers Z3 and CVC4 (RQ1) and
its findings are significant (RQ2). Further evaluation shows that YinYang
can improve code coverage (RQ3) and that Semantic Fusion is necessary
for YinYang’s effectiveness in bug finding (RQ4).

reception Our testing effort produced significant, high-quality results.
We specifically focused on the default modes of arithmetic and string solvers.
As most users invoke SMT solvers in default modes, the bug reports are
particularly valuable. YinYang found 39 critical soundness bugs, which
shows the effectiveness of Semantic Fusion. Our bugs in Z3 have been fixed
in the recent release versions, which makes Z3 more reliable and robust. In
the following, we give a few developer’s comments on our bug reports:

“Thanks a lot for finding this, this is fixed in my latest PR."

https://github.com/CVC4/CVC4/issues/3203#issuecomment-523102312

“Another excellent find, thanks a lot. This is fixed in my latest PR."

https://github.com/CVC4/CVC4/issues/3217#issuecomment-524364360

“Thanks a lot, this is another great bug find. This is fixed in my latest PR."

https://github.com/CVC4/CVC4/issues/3203#issuecomment-523102312
https://github.com/CVC4/CVC4/issues/3217#issuecomment-524364360

3.7 discussion 47

https://github.com/CVC4/CVC4/issues/3272#issuecomment-531003582

“This is another great find, thank you! The issue should now be fixed on
master"

https://github.com/CVC4/CVC4/issues/3357#issuecomment-538719981

“This was a bug in a rewrite rule. The example also exposed some opportunities
for better rewrites."

https://github.com/Z3Prover/z3/issues/3926#issuecomment-613140447

“exposed: incomplete axiomatization of stoi; more opportunities for rewriting"

https://github.com/Z3Prover/z3/issues/4153#issuecomment-621317036

semantic fusion, opfuzz , and other more recent approaches

Since the first publication of Semantic Fusion at PLDI 2020, researchers
proposed three more approaches on SMT solver testing, worth discussing in
this paragraph. One of them is STORM [32], a mutational fuzzer based on
metamorphic testing. STORM generates mutants in a three-phase process of
seed fragmentation, formula generation, and instance generation. STORM
found 27 bugs in Z3, however none in CVC4. Another approach is Ban-
ditFuzz [58], a reinforcement learning-based fuzzer. Similar to StringFuzz,
BanditFuzz’s main focus is on performance issues in SMT solvers and less
on correctness bugs. The authors have identified inconsistent results for
1600 syntactically different bug triggers on the four SMT solvers Z3, CVC4,
MathSAT [42], Colibri, and 100 bug triggers in z3str3. However, the number
of unique bugs in Z3 remains unclear as the authors did not reduce and
report the bug triggers to filter out the duplicates.

OpFuzz [2], another follow-up work, has found several hundreds of bugs
in the SMT solvers Z3 and CVC4. The key idea behind OpFuzz is to mutate
SMT-LIB operators in a type-aware manner and then use differential testing
to cross-check the solvers. Comparing our approach against OpFuzz is
challenging. In the following, we can hence only give an approximation.
OpFuzz’s fuzzing campaign lasted for a year while YinYang’s fuzzing
campaign lasted for six months plus an additional period of less extensive
testing. The fuzzing campaign with OpFuzz has focused on various logics
and configurations of the solvers while our approach focused solely on (non-
)linear arithmetic and string logics and solver default modes. Comparing
the soundness bug findings for the logics which both YinYang and OpFuzz
tested, OpFuzz found 81 soundness bugs in Z3 and 10 soundness bugs
in CVC4 (all in default mode). Provided that OpFuzz’s campaign was

https://github.com/CVC4/CVC4/issues/3272#issuecomment-531003582
https://github.com/CVC4/CVC4/issues/3357#issuecomment-538719981
https://github.com/Z3Prover/z3/issues/3926#issuecomment-613140447
https://github.com/Z3Prover/z3/issues/4153#issuecomment-621317036

48 semantic fusion

almost twice as long and the used seeds were richer (e.g., the Z3 and CVC4

regression test suites were used containing non-standard SMT-LIB features
such as tactics). YinYang is competitive although OpFuzz’s absolute results
are stronger than YinYang findings: 31 soundness bugs in Z3 and 5 for
CVC4. While both approaches are empirically effective, the use cases for
OpFuzz and YinYang are complementary. As OpFuzz is based on differential
testing it needs at least two solvers implementing the tested features. Hence,
testing new theories or language extensions available in a single solver is
usually only feasible with Semantic Fusion, not with OpFuzz. A recent
example is Z3’s regex solver [59] which supports regexes with free variables.
This feature is currently unsupported by CVC4. As a consequence, testing
the regex solver with OpFuzz is often ineffective as CVC4 rejects mutants
with free variables in regexes. Another example is (quantified) non-linear
arithmetic for which Z3 has a very strong solver. CVC4, however, often
returns unknown or times out on mutants with nonlinear arithmetic mutated
by OpFuzz. Hence, OpFuzz is unable to test Z3’s implementation of the non-
linear arithmetic on such mutants. Furthermore, although rare, sometimes
the two differentially tested solvers are both wrong, in which case OpFuzz
would be unable to detect the bug. On the other hand, OpFuzz can be
more easily extended to theories for which other strong solvers exist, as
specifying type-aware operator mutations is simpler than designing fusion
functions. Our work found 62 confirmed bugs in modern, mature, and
widely-used SMT solvers, significantly more than any prior work on SMT
solver testing before it. It is the first work to demonstrate that SMT solvers
are much less stable than previously thought and inspired the follow-up
research. Semantic Fusion is general and can find bugs in various logics
while much prior work only focuses on the string logic.

limitations and future work While Semantic Fusion has demon-
strated to be effective for SMT solver testing, it does also come with some
limitations. First, Semantic Fusion relies on the given seed formulas. Second,
one needs to manually design the fusion and inversion functions; devising
variable fusion and variable inversion functions by hand can be difficult. It
would be interesting future work to explore the automatic construction of
variable fusion and inversion functions.

3.8 related work 49

3.8 related work

We discuss three strands of related work: (1) SMT solver validation, (2)
validation of program analyzers, and (3) metamorphic testing.

SMT Solver Validation

previous approaches FuzzSMT [60] is the first effort targeting SMT
solver validation. It is based on grammar-based blackbox fuzzing and differ-
ential testing. Brummayer and Biere evaluated FuzzSMT on the bit-vector
logic and found 16 defects in five solvers, but no soundness bugs in Z3.
BtorMBT [61] is a model-based testing tool for Boolector [62], an SMT
solver for bit-vectors with arrays. It generates sequences of API calls to
exploit the features of the solver. BtorMBT did not find bugs in any mature
solvers. StringFuzz [56] focuses on performance issues in the string logic. It
generates test cases by either mutating and transforming the benchmarks or
generating random valid formulas. It found 3 performance and implemen-
tation bugs in z3str3 by differential testing. Different from these differential
testing-based approaches, Semantic Fusion tackles the test oracle problem
by construction, rather than cross-checking, making it capable of testing
solver-specific features. Bugariu and Müller [63] proposed a formula syn-
thesis approach to generating SMT formulas in the string logic with known
satisfiability. It generates increasingly complex formulas via satisfiability-
preserving transformations. Several bugs in Z3 were reported, while no
reported bugs in CVC4. We instead fuse two formulas and preserve the
satisfiability via fusion/inversion functions.

Validation of Program Analyzers

With program analyzers becoming increasingly practical and adopted,
it is critical to ensure their reliability [48]. Several efforts explored this
problem, targeting software model checkers, symbolic execution engines,
and various static analyzers. Both Zhang et al. [64] and Klinger et al. [65]
developed approaches to testing software model checkers — the approach
by Zhang et al. [64] is based on reachability queries, while the approach
by Klinger et al. [65] is based on differential testing. Kapus et al. [66] used
random program generation and differential testing to find bugs in symbolic
execution engines. Wu et al. [67] found bugs in alias analyses via cross-
checking with dynamic aliasing information. Bugariu et al. [68] proposed an

50 semantic fusion

approach for finding soundness and precision bugs in numerical abstract
domains. Qiu et al. [69] and Pauck et al. [70] reported experiences in testing
and finding defects in analyzers for Android apps. Many of these program
analyzers, such as software model checkers, symbolic execution engines,
and program verifiers, critically rely on SMT solvers. Thus, our work also
indirectly improves the reliability of program analyzers.

Metamorphic Testing

The test oracle problem is a longstanding challenge in software testing.
Metamorphic testing is a general approach to this problem [71]. Its key
idea is to leverage existing tests to construct additional ones with expected
results via certain metamorphic relations. For example, the technique of
equivalence modulo inputs (EMI) [72] is a notable instance of metamorphic
testing for compilers. It constructs equivalent test programs for a seed
program with respect to a given input by strategically mutating the seed
program. To date, the general EMI-based approach and its variants [73,
74] have found more than 1,600 bugs in GCC and Clang/LLVM. EMI
and metamorphic testing, in general, were also adapted to test shader
compilers [75, 76]. The Semantic Fusion methodology introduced in this
paper is also an instance of metamorphic testing — it generates new test
formulas by fusing two existing test cases and preserving their oracle.
Semantic Fusion is a new and highly generic metamorphic testing approach
that we successfully applied to SMT solver testing.

4
T Y P E - AWA R E O P E R AT O R M U TAT I O N

Semantic Fusion has demonstrated that SMT solvers are clearly less reliable
than previously presumed. Yet it is unclear whether SMT solvers have
now reached a strong level of maturity or whether many critical bugs
remain. This chapter proposes Type-Aware Operator Mutation, a simple
but unusually effective finding 1,254 unique bugs in Z3 and CVC4.

4.1 motivation

Satisfiability Modulo Theory (SMT) solvers are important tools for many
programming language advances and applications. Incorrect results from
SMT solvers can invalidate the results of these tools, which can be disastrous
in safety-critical domains. Hence, the SMT community has undertaken great
efforts to make SMT solvers reliable. Examples include the standardized
input/output file formats for SMT solvers, semi-formal logic/theory spec-
ifications, extensive benchmark repositories, and yearly-held SMT solver
competitions. To date, there are several mature SMT solvers, among which
Z3 and CVC4 are the most prominent ones. Both Z3 and CVC4 are very
stable and reliable. In Z3, there have been fewer than 150 reported sound-
ness bugs in more than three years, while fewer than 50 in CVC4 in more
than 8 years.1 Despite this, SMT solvers are complex pieces of software and
inevitably still have latent bugs. Various automated testing approaches [56,
60, 63] were devised for finding bugs in SMT solvers. However, nearly
all SMT solver soundness bugs have still been exposed by applications,
not by these techniques. This has only begun to change with the recently
proposed works Semantic Fusion [1] and STORM [32]. Both exposed several
soundness bugs in Z3, while Semantic Fusion additionally exposed some
soundness bugs in CVC4. Yet, it is unclear whether SMT solvers have now
reached a strong level of maturity or whether many critical bugs remain.

type-aware operator mutation To answer these questions, we
introduce Type-Aware Operator Mutation, a simple, yet unusually effective

1 Data recorded before any SMT fuzzing campaigns: July 2010 to October 2019 for CVC4; April
2015 to October 2019 for Z3.

51

52 type-aware operator mutation

; \phi

(assert (forall ((a Int))

(exists ((b Int))

(distinct (* 2 b) a))))

(check-sat)

; \phi_{test}

(assert (forall ((a Int))

(exists ((b Int))

(= (* 2 b) a))))

(check-sat)

Figure 4.1: Type-aware operator mutation illustrated. We mutate the distinct
operator in φ to the equals operator (see φtest). Formula φtest triggers a
soundness bug in Z3 which reports sat on this unsatisfiable formula.
https://github.com/Z3Prover/z3/issues/3973

approach for stress-testing SMT solvers. Its key idea is to mutate operators
by other operators of conforming types within SMT formulas. Figure 4.1
illustrates type-aware operator mutation on an example formula. We replace
the "distinct" in φ by an operator of conforming type, e.g., the equals
operator "=" to obtain formula φtest. We then differentially test SMT solvers
with φtest as input and observe their results. If the results differ, e.g., one
SMT solver returns sat while the other returns unsat, we have found a
soundness bug in either of the tested solvers. Formula φtest inuitively reads
as: "every integer number a is even". It is clearly unsatisfiable as b cannot
exist whenever a is odd. In fact, while CVC4 correctly returns unsat on φtest,
Z3 incorrectly reports sat on φtest. Thus, φtest has triggered a soundness
bug in Z3 which was promptly fixed by Z3’s main developer.

bug hunting with opfuzz We have engineered OpFuzz, a practical
realization of Type-Aware Operator Mutation. OpFuzz is unusually effective.
During our bug-hunting campaign from September 2019 to September 2020,
we found and reported 1,254 bugs in Z3 and CVC4 issue trackers, among
which 963 were confirmed by the developers and 917 were already fixed.
We have found bugs across various logics such as (non-)linear integer and
real arithmetic, uninterpreted functions, bit-vectors, strings, sets, sequences,
arrays, floating-point, and combinations of these logics. Among these, most
of the bugs (575) were found in the default modes of the solvers, i.e.,
without additionally supplied options. This underpins the importance of
our findings. We have found many high-quality soundness bugs in Z3 and
notably also in CVC4, which has been proven to be a very robust SMT
solver by previous work. The root causes of the bugs that we found are
often complex and, sometimes require the developers to perform major
code changes to fix the underlying issues. The developers of Z3 and CVC4

https://github.com/Z3Prover/z3/issues/3973

4.1 motivation 53

Approach
Bugs in Z3 Bugs in CVC4

soundness all soundness all

StringFuzz [56] 0 (0) 1 (0) - -

BanditFuzz [58] ≥ 1 (0) ≥ 1 (0) - -

Bugariu and Müller [63] 3 (1) 5 (3) 0 (0) 0 (0)

YinYang [2] 25 (24) 39 (36) 5 (5) 9 (8)

STORM [32] 21 (17) 27 (21) 0 (0) 0 (0)

OpFuzz 193 (128) 674 (438) 33 (14) 289 (134)

Figure 4.2: Comparison of bugs found by OpFuzz against other SMT solver
testing approaches. Snapshot at October 15, 2020. In parentheses:
confirmed bugs in the default modes of the solvers. Performance
issues are excluded from this comparison.

greatly appreciated our bug-finding effort with comments like "Great find!",
"Thanks a lot for the bug report!" or labeling our bug reports as "major".

comparison of opfuzz with recent smt fuzzers Compared to
other fuzzers of other fuzzing campaigns, OpFuzz found orders of magni-
tude more critical bugs in Z3 and CVC4. Figure 4.2 compares OpFuzz with
recent SMT solver fuzzer from the last two years. We use the term bug trig-
ger to refer to a formula that triggers a bug in an SMT solver and the term
bug to refer to a single unique bug in an SMT solver. Note, bug triggers
can be caused by the same underlying bug. All bug counts mentioned in
the comparison and refer to unique bugs. We have not considered older
approaches and defer to the related work section (Section 4.6).

Prior approaches can be roughly separated into two categories: genera-
tors (StringFuzz [56], Bugariu and Müller’s approach [63], BanditFuzz [58])
and mutators (StringFuzz, YinYang [1], STORM [32]). StringFuzz is a string
formula generator that also comes with a mutator. It mainly targets perfor-
mance issues in z3str3 [77], an alternate string solver in Z3. StringFuzz can
find correctness bugs as a by-product; the paper mentioned one. Bugariu
and Müller’s approach is a formula synthesizer for string logic generating
formulas that are by construction (un)satisfiable. They found 5 bugs in Z3

in total with 3 soundness bugs, but none in CVC4. Recently, BanditFuzz, a
reinforcement learning-based fuzzer has been proposed. Similar to String-
Fuzz, BanditFuzz’s main focus is on performance issues in SMT solvers and

54 type-aware operator mutation

less on correctness bugs. The authors have identified inconsistent results for
1,600 syntactically different bug triggers on the four SMT solvers Z3, CVC4,
MathSAT [42], Colibri, and 100 bug triggers in z3str3. However, the number
of unique bugs in Z3 remains unclear as the authors did not reduce and re-
port the bug triggers to filter out the duplicates. Among the mutation-based
fuzzers, YinYang is an approach to stress-test SMT solvers by fabricating
fused formula pairs that are by construction either (un)satisfiable. YinYang
found 39 bugs in Z3 and 9 in CVC4. Another recent approach is STORM
which is based on a three-phase process of seed fragmentation, formula
generation, and instance generation. STORM has found 27 bugs in Z3 with
21 being soundness bugs, but none in CVC4. As Figure 4.2 illustrates, our
realization OpFuzz of type-aware operator mutation compares favorably
against all existing approaches by a significant margin — OpFuzz found
substantially more bugs in both Z3 and CVC4 in terms of all bugs, the
soundness bugs in Z3 and CVC4, and bugs for the default modes of the
solvers. Existing approaches also extensively tested Z3 and CVC4, and have
missed the bugs found by OpFuzz.

4.2 illustrative examples

We first examine three exemplary bugs that were found by our technique.
Consider the formula in Figure 4.3a on which CVC4 returns the following
model: a = − 3

2 and b = − 1
2 . This model is invalid as a · b ̸= 1. Mutating the

equals operator = to the greater operator > hides this bug (see Figure 4.3b).
As another example, consider the formula in Figure 4.3c. CVC4 gives an
invalid model on this formula by setting f = g = false. Furthermore, CVC4

crashes on the formula in Figure 4.3e. Again in both cases, the bug disap-
pears with a single operator change (see Figure 4.3b and Figure 4.3d). All
illustrated cases show that operators play an important role in triggering
SMT solver bugs. This inspired our technique, Type-Aware Operator Muta-
tion, that is to stress-test SMT solvers via mutating operators and use the
so mutated formulas for stress-testing SMT solvers.

However, substituting an operator with another arbitrary operator may
not always yield a syntactically correct formula. As an example, consider
Figure 4.4a that presents a syntactically correct seed formula. By substi-
tuting the first operator greater than operator > to *, the formula becomes
syntactically incorrect (see Figure4.4b). This is because the assert statement
expects a boolean expression, while * returns a real. The formula of Fig-
ure 4.4b is of little value to testing an SMT solver’s decision procedures

4.2 illustrative examples 55

1 (set-logic NRA)
2 (declare-fun a () Real)
3 (declare-fun b () Real)
4 (assert (= (* a b) 1))

5 (check-sat) (get-model)

(a) Invalid model bug in CVC4.
https://github.com/CVC4/CVC4/issues/3407

1 (set-logic NRA)
2 (declare-fun a () Real)
3 (declare-fun b () Real)

4 (assert (> (* a b) 1))

5 (check-sat) (get-model)

(b) Mutating the equals operator in Fig-
ure 4.3a to a greater operator makes
the bug disappear.

1 (declare-fun f (Int) Bool)
2 (declare-fun g (Int) Bool)

3 (assert (distinct f g))

4 (check-sat)
5 (get-model)

(c) Invalid model bug in CVC4.
https://github.com/CVC4/CVC4/issues/3527

1 (declare-fun f (Int) Bool)
2 (declare-fun g (Int) Bool)
3 (assert (= f g))

4 (check-sat)
5 (get-model)

(d) Mutating the equals operator in Fig-
ure 4.3c to a distinct operator makes
the bug disappear.

1 (declare-fun x () Real)

2 (assert (distinct x (sin 4.0)))

3 (check-sat)

(e) CVC4 crashes on this formula.
https://github.com/CVC4/CVC4/issues/3614

1 (declare-fun x () Real)

2 (assert (>= x (sin 4.0)))

3 (check-sat)

(f) Mutating the distinct operator in Fig-
ure 4.3e to a greater than operator
makes the bug disappear.

Figure 4.3: Left column: bug-triggering formulas in SMT-LIB format. Right col-
umn: formulas that were transformed from the corresponding bug-
triggering formulas by a single operator change.

since the solvers would reject such formulas already at a preprocessing
stage. Hence, we have to consider the operator types for the substitutions,
i.e., avoid substituting an operator returning a boolean value, such as =,
by an operator returning a real, such as *; neither should we substitute
an operator with a single argument, like not, by an operator of two or
more arguments, such as =. Instead, we mutate the operators in a type-
aware fashion. Consider the first > of the formula in Figure 4.4a. It takes
an arbitrary number of numeral arguments and returns a boolean. Candi-
dates for its substitution are <=, >=, <, =, and distinct, all of which have
a conforming type, i.e., read more than one numerals and return a boolean.
Therefore, we can safely substitute > of the formula in Figure 4.4a with

https://github.com/CVC4/CVC4/issues/3407
https://github.com/CVC4/CVC4/issues/3527
https://github.com/CVC4/CVC4/issues/3614

56 type-aware operator mutation

1 (declare-fun a () Real)

2 (assert (> (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(a) Original formula

1 (declare-fun a () Real)

2 (assert (* (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(b) Syntactically incorrect mutant.

1 (declare-fun a () Real)
2 (assert (= (/ (* 2 a) a) (* a a) 1))

3 (check-sat)

(c) Syntactically correct mutant.

1 (declare-fun a () Real)

2 (assert (= (/ (* 2 a) a) (/ a a) 1))

3 (check-sat)

(d) Bug triggering mutant.

Figure 4.4: Motivating examples for Type-Aware Operator Mutation.

a random candidate, e.g., =. As a result, we obtain the mutant formula
in Figure 4.4c. This formula is syntactically correct and can successfully
pass the preprocessing phase of the SMT solvers. We call such mutations
type-aware operator mutations. As we have the guarantee that the mutant is a
type-correct formula, we can do iterative type-aware operator mutations.
Given the mutant formula in Figure 4.4c, we further substitute the second
occurrence of * with / safely. This yields the formula in Figure 4.4d which
triggered a soundness bug in Z3. Division by zero terms are specified in the
Real and Int theories of the SMT-LIB as the uninterpreted terms, meaning
that for a term (/ t 0) and arbitrary value v, the equation (= v (/ t 0))

is satisfiable. In fact, we can set a = 0 to realize a model for the formula
in Figure 4.4d, i.e., let the division by zero terms be 1 to satisfy the assert.
Hence, the formula in Figure 4.4d is satisfiable. However, Z3 incorrectly
reports unsat on it.

4.3 type-aware operator mutation

In this section, we formally introduce Type-Aware Operator Mutation and
propose OpFuzz, a fuzzer for stress-testing SMT solvers.

background For a formula φ, we define F(φ) to be φ’s set of (enumer-
ated) function occurrences. For example, for φ = (+ (* 1 1) (- 2 (* 5 2))),
we have: F(φ) = {+1, *1, -1, *2}. Formula φ[f1/ f2] describes the substitu-
tion of function f2 by f1 in φ. Expressions and functions are typed. For
example, 1 is of type Int, 1.0 is of type Real, "foo" is of type String. Sim-
ilarly, functions also have types. We denote the type of a function f by
f : A→ B where A is the type of its arguments and B its return type. We

4.3 type-aware operator mutation 57

Function types Function Symbols

Γ, A <: ⊤ ⊢ A× · · · × A→ Bool =, distinct

Γ ⊢ Quantifier× Bool→ Bool exists, forall

Γ ⊢ Bool× · · · × Bool→ Bool and, or, =>

Γ, Int <: Real ⊢ Real× · · · × Real→ Bool <=, >=, <, >

Γ, Int <: Real ⊢ Real× · · · × Real→ Real +, -, *, /

Γ ⊢ Int× · · · × Int→ Int div

Γ ⊢ Int× Int→ Int mod

Figure 4.5: SMT function symbols categorized by their type.

use Γ to denote the static typing environment of the SMT-LIB language.
For example, we write Γ ⊢ Int× Int→ Int for the type of function mod and
Γ ⊢ Int× · · · × Int → Int for the function div. Int× · · · × Int means func-
tion div accepts more than one argument with type Int. Figure 4.5 shows
selected functions and their types. We emphasize that our theory is not
restricted to the functions used in Figure 4.5. It can be extended to a richer
set of functions and types according to the SMT-LIB standard. Similar
to other programming languages with types, we can define a subtyping
relation for the SMT-LIB language. We now formalize a fragment of the
SMT-LIB’s type system. We define type Int to be a subtype of Real, i.e.,
Γ ⊢ Int <: Real. Let A be an arbitrary type, then we define type A×A to
be a subtype of A× · · · ×A, i.e., Γ, A <: ⊤ ⊢ A×A <: A× · · · ×A. For two
functions f1 : A1 → B1 and f2 : A2 → B2 with A1 <: A2 and B2 <: B1:

A1 <: A2 B2 <: B1

f2 : A2 → B2 <: f1 : A1 → B1

For example, consider the function div of type Int× · · · × Int → Int and
function mod of type Int× Int→ Int from Figure 4.5. We can hence conclude
that div’s type is a subtype of mod’s type:

Γ ⊢ Int× Int <: Int× · · · × Int Γ ⊢ Int <: Int
Γ ⊢ Int× · · · × Int→ Int <: Int× Int→ Int

We call φ well-typed if it complies with the rules of SMT-LIB’s type system.
Having provided basic background, we present Type-Aware Operator

Mutation, the key concept of this chapter. We first introduce type-aware

58 type-aware operator mutation

operator mutations and then show that type-aware operator mutants realize
well-typed SMT-LIB programs.

Definition 4.3.1 (Type-aware operator mutation). Let φ be an SMT formula
and let f1 : t1 and f2 : t2 be two of its functions. We say formula φ′ =
φ[f2/ f1] is a type-aware operator mutant of φ if t2 <: t1. Transforming φ

to φ[f2/ f1] is called type-aware operator mutation.

Proposition 4.3.1. Type-aware operator mutants are well-typed.

Proof. Let φ be a well-typed SMT formula and let φ′ be a type-aware
operator mutant of φ. According to Definition 4.3.1 we know that φ′ =
φ[f2/ f1] where f1 : t1 and f2 : t2 are two of φ’s functions. By Definition 4.3.1,
we also know t2 <: t1. This implies that all arguments of f1 are also accepted
by f2 and all values returned by f2 could be produced by f1. Thus, f2 accepts
all the inputs provided by φ′, and formula φ′ accepts all the outputs of f2.
Therefore formula φ′ is well-typed.

Example 4.3.1. Consider the following formula:

φ = (assert (= (mod 1 1) 1)

with F(φ) = {=, mod}. We randomly pick function mod from F and substitute
it with a function that has its subtype, e.g., the function div. We get the
following type-aware operator mutant φ′ = (assert (= (div 1 1) 1). As
Proposition 4.3.1 shows, φ′ is guaranteed to be well-typed Thus, we can
use formula φ′ for testing SMT solvers.

opfuzz We implemented OpFuzz, a type-aware operator mutation-based
fuzzer, for stress-testing SMT solvers. OpFuzz leverages type-aware operator
mutation to generate test inputs and validates the results of the SMT solvers
via differential testing, i.e., by comparing the results of two or more SMT
solvers and reporting their inconsistencies. Algorithm 3 presents the main
process of OpFuzz. OpFuzz takes a set of seed formulas Seeds, two SMT
solvers S1, S2 and parameter n as its input. OpFuzz collects bug triggers
in the set triggers which is initialized to the empty set. The main process
runs inside a while loop until an interrupt is detected, e.g., by the user
or by a time or memory limit that is reached. We first choose a random
formula φ from the set of formulas Seeds for initialization. In the while
loop, we then perform a type-aware operator mutation on φ realized by
the type_aware_op_mutate function. In the type_aware_op_mutate function

4.3 type-aware operator mutation 59

Algorithm 3 OpFuzz’s main process.
1: procedure OpFuzz(Seeds, S1, S2, n)

2: triggers← ∅

3: while true do

4: φ← random.choice(Seeds)
5: for i = 1 to n do

6: φ′ ← type_aware_op_mutate(φ)

7: if ¬validate(φ′, S1, S2) then

8: triggers← triggers ∪ {φ′}

9: φ← φ′

10: if Interruption then

11: break

12: return triggers

(Algorithm 4), we first randomly pick a function f1 from the set of functions
in φ. Then, we randomly choose a function f2 from the set of f1’s subtypes.
The subtype function is realized based on Figure 4.5. After we obtained
φ′ = φ[f2/ f1] by type-aware mutation on φ, we call the function validate.
It cross-checks two SMT solvers S1 and S2 via differential testing on the
input formula φ′. First, it checks whether either of the solvers has produced
an error on processing φ′, e.g., the SMT solver did not terminate successfully,
throwing out an error message. We distinguish two cases: either φ′ triggered
an assertion violation or segmentation fault (crash), or a model validation
error that occurs for solvers with model validation enabled (invalid model).
In both cases, the function returns false. Otherwise, it checks whether the
results of the solvers are different, and returns false if so, else validate

returns true indicating that φ′ has not exposed a bug trigger in either of the
solvers S1 and S2. OpFuzz realizes an n-times repeated type-aware operator
mutation on every seed formula. For the parameter n, a value within 200
and 400 has worked well in practice.

OpFuzz is very light-weight. We realized OpFuzz in a total of only 212 lines
of Python 3.7 code. OpFuzz can be run in parallel mode, which can signifi-
cantly increase its throughput. Users can customize OpFuzz’s command-line
interface to test specific solvers and/or configurations. OpFuzz can be used
with any SMT solver that takes SMT-LIB v2.6 files as its input. We imple-
mented the mutations w.r.t. the function symbols in Figure 4.5.

60 type-aware operator mutation

Algorithm 4 Function realizing type-aware operator mutations and function for
differentially testing of the SMT solvers S1 and S2.

1: function type_aware_op_mutate(φ)

2: f1 ← random.choice(F(φ))

3: f2 ← random.choice(subtypes(f1))
4: return φ[f2/ f1]

5: function validate(φ′, S1, S2)

6: if S1(φ′) = error ∨ S2(φ′) = error then

7: return false

8: if ∨ S1(φ′) ̸= S2(φ′) then

9: return false

10: return true

4.4 empirical evaluation

This section details our extensive evaluation with OpFuzz demonstrating
the practical effectiveness of Type-Aware Operator Mutation for testing SMT
solvers. Between September 2019 and September 2020, we were running
OpFuzz to stress-test the SMT solvers Z3 [38] and CVC4 [39]. We have
chosen Z3 and CVC4, since they (1) both are popular and widely used
in academia and industry, (2) support a rich set of logics, and (3) adopt
an open-source development model. During our testing period, we have
filed numerous bugs on the issue trackers of Z3 and CVC4. This section
describes the outcome of our fuzzing campaign and efforts.

result summary and highlights OpFuzz is unusually effective.

• Many confirmed bugs: In one year, we have reported 1,254 bugs, and 963

unique bugs in Z3 and CVC4 have been confirmed by the developers.

• Many soundness bugs: Among these, there were 226 soundness bugs in
Z3 and CVC4. Most notably, we have found 33 in CVC4.

• Most logics affected: Our bug findings affect most SMT-LIB logics
including strings, (non-)linear integer and real arithmetic, bit-vectors,
uninterpreted functions, floating points, arrays, sets, sequences, horn,
and combinations thereof.

4.4 empirical evaluation 61

• Most bugs in default modes: 575 out of our confirmed 963 bugs are in
the default modes of the solvers.

4.4.1 Evaluation Setup

hardware setup and test seeds We have run OpFuzz on an AMD
Ryzen Threadripper 2990WX processor with 32 cores and 32GB RAM on
an Ubuntu 18.04 64-bit. As test seeds, we have mainly used the SMT-LIB
benchmarks [47]. We chose the SMT-LIB benchmarks as our test seeds
since they make the largest collection of SMT formulas in the SMT-LIB 2.6
language. These SMT-LIB benchmarks are also used in the SMTComp, the
annual SMT solver competition. Therefore, they are unlikely to trigger bugs
in Z3 and CVC4 since they have already been run on them. In addition to
the SMT-LIB benchmarks, we used the regression test suites of Z3 [78] and
CVC4 [79]. We show the seed formula counts categorized by logic and solv-
ing mode in Appendix A.2. We treated all seed files equally during fuzzing.
The effort spent on testing for a specific logic is therefore proportional to
the number of its seed files within the overall seed set. Consequently, logics
with a high seed count get tested more frequently as compared to others
with a lower seed count. We regularly ran Z3 and CVC4 on all seed files
and excluded bug-triggering seeds but have very rarely encountered any
bug-triggering seed formulas.

tested options and features We mainly focused our testing ef-
forts on the default modes of the solvers. For CVC4, this includes enabling
the options --produce-models, --incremental and --strings-exp as needed
to support all test seed formulas. To detect invalid model bugs, we have
supplied --check-models to CVC4 and model.validate=true to Z3. We con-
sider these to be part of the default mode for the two solvers Z3 and
CVC4 if apart from these necessary options, no other options or tactics
were used. Besides the default modes of Z3 and CVC4, we have consid-
ered many frequently used options and solver modes for Z3 and CVC4 of
which we only detail a subset here. For Z3, we have stress-tested several
tactics and several arithmetic solvers including smt.arith_solver=x with
x ∈ {1, · · · , 6}. We have also tested, among others, the string solver z3str3

by supplying smt.string_solver=z3str3. In CVC4 we have tested, among
many other options, syntax-guided synthesis procedure [80] by specifying
--sygus-inference and higher-order reasoning for UF --uf-ho.

62 type-aware operator mutation

bug types We have encountered many different kinds of bugs and issues
while testing SMT solvers. We distinguish them by the following categories
with two SMT solvers S1 and S2.

• Soundness bug: Formula φ triggers a soundness bug if solvers S1 and
S2 both do not crash and give different results on φ.

• Invalid model bug: Formula φ triggers an invalid model bug if the
model returned by the solver does not satisfy φ.

• Crash bug: Formula φ triggers a crash bug if the solver throws out an
assertion violation or a segmentation fault while solving φ.

OpFuzz detects soundness bug triggers by comparing the standard outputs
of the solvers. It detects invalid model bug triggers by internal errors when
using the SMT solver’s model validation configuration. A crash bug trigger
is detected if a solver returns a non-zero exit and no timeout occurs.

bug trigger de-duplication OpFuzz collects bug triggers that may
stem from the same underlying bug. Hence, we de-duplicated the bug
triggers after each fuzzing run to avoid duplicate bug reports on the GitHub
issue trackers. Crash bugs are either assertion violations or segmentation
faults. We de-duplicate assertion violations via the location information (file
name and line number) printed on standard output/error. We de-duplicate
segmentation faults by comparing their ASAN traces. For soundness and
invalid model bugs, we used the following procedure. We first categorize
the bug triggers by theory. We do this because bug triggers in different
theories are likely to be unique bugs. Then, we select one bug trigger
per theory at a time for reporting. If the bug was fixed, we checked the
remaining bug-triggering formulas of the same theory. If either one of them
still triggered a bug in the solver, we repeat this process until none of the
remaining formulas triggers a bug anymore.

bug reduction If a bug trigger is selected in the trigger de-duplication,
we reduce the bug-triggering formula to a small enough size for reporting.
We use C-Reduce [54], a C code reduction tool that also works for the
SMT-LIB language. We implemented a pretty printer to help with the
bug reduction process, e.g., when C-Reduce has converged to a still very
large formula or hangs. The pretty-printer makes simple modifications to
the abstract syntax tree of the formula, e.g., flattens nestings of the same
operator, removes additions and multiplications with neutral elements, and
returns the modified formula in a human-readable format.

4.4 empirical evaluation 63

Status Z3 CVC4 Total

Reported 915 339 1,254
Confirmed 674 289 963

Fixed 656 261 917

Duplicate 96 20 116

Won’t fix 124 29 153

(a)

Type Z3 CVC4 Total

Crash 339 209 548

Soundness 193 33 226

Invalid model 111 27 138

Others 31 20 51

(b)

#Options Z3 CVC4 Total

default 442 133 575

1 138 86 224

2 51 31 82

3+ 43 39 82

(c)

Figure 4.6: (a) Status of bugs found in Z3 and CVC4. (b) Bug types among the
confirmed bugs. (c) # Solver options among the confirmed bugs.

4.4.2 Evaluation Results

Having defined the setup and bug types, we continue with the presentation
of the evaluation results. The section is divided into three parts: (1) statistics
on the bug findings by OpFuzz to assess its effectiveness, (2) coverage
measurements of OpFuzz relative to the seed formulas (3) solver trace
comparisons to gain further insights into the technique.

bug findings Figure 4.6a shows the bug status counts. By "Reported",
we refer to the unique bugs after bug trigger de-duplication that we posted
on the GitHub issue trackers of the solvers; by "Confirmed", we refer to
those posted bugs that were confirmed by the developers as unique bugs;
by "Fixed", we refer to those posted bugs that were confirmed by the
developers as unique bugs and addressed through at least one bug-fixing
commit; by "Duplicate", we refer to those bugs posted on GitHub that have
been identified by the developers as duplicate to another bug report of
ours or to a previously existing bug report; by "Won’t fix", we refer to those
posted bugs that were rejected by the developers, due to misconfigurations.

We have reported a total of 1,254 bugs on Z3’s and CVC4’s respective
issue trackers. Among these, 963 unique bugs were confirmed and 917 were
fixed. Although we devoted equal testing effort to both solvers, we found
more than twice as many bugs in Z3 as in CVC4. Previous approaches
made similar observations [1].

Figure 4.6b shows the bug types. Among the bug types of the confirmed
bugs, crash bugs were most frequent (548), followed by soundness bugs
(226) and invalid model bugs (138). The type "Others" refers to all other
unexpected behaviors in SMT solvers such as rejecting syntax-correct for-
mulas, alarming invalid models when generating a valid model. The large

64 type-aware operator mutation

Logic S I C O Total

QF_S 47 32 45 9 133

NRA 21 0 46 1 68

QF_NRA 16 10 20 8 54

QF_SLIA 16 8 20 0 44

QF_LIA 6 10 26 1 43

QF_NIA 17 4 16 2 39

UFLIA 4 6 16 0 26

QF_FP 1 10 11 0 22

Uncategorized 5 0 16 1 22

UF 3 1 18 0 22

QF_BV 8 4 9 0 21

LIA 6 0 13 0 19

QF_LRA 5 2 7 2 16

QF_UF 1 6 8 0 15

NIA 5 0 9 0 14

QF_UFLIA 1 6 6 0 13

LRA 4 1 8 0 13

QF_NIRA 3 5 1 2 11

Horn 4 2 5 0 11

QF_AX 2 1 7 0 10

ALIA 1 0 9 0 10

BV 3 0 6 0 9

NIRA 3 2 1 3 9

Set 1 0 5 0 6

UFIDL 2 0 2 0 4

QF_ABV 3 0 0 0 3

AUFNIRA 0 1 2 0 3

FP 2 0 1 0 3

Sequences 0 0 1 1 2

UFLRA 0 0 2 0 2

QF_ABVFP 0 0 2 0 2

ABV 1 0 0 0 1

UFNIA 1 0 0 0 1

QF_UFIDL 0 0 1 0 1

QF_LIRA 0 0 0 1 1

QF_UFNRA 1 0 0 0 1

Total 193 111 339 31 674

(a) Z3

Logic S I C O Total

QF_NRA 3 4 20 4 31

NRA 1 2 15 4 22

Set 3 0 15 1 19

Uncategorized 2 2 14 0 18

QF_S 6 2 9 1 18

UFLIA 0 2 16 0 18

QF_LIA 3 0 13 0 16

UF 1 0 15 0 16

QF_BV 1 1 14 0 16

LIA 2 0 12 0 14

QF_LRA 1 0 6 3 10

BV 1 0 8 0 9

LRA 0 0 9 0 9

QF_UF 1 0 7 0 8

QF_FP 1 0 6 0 7

QF_NIA 2 0 4 0 6

QF_SLIA 1 2 1 2 6

NIA 1 0 3 1 5

QF_AX 0 0 5 0 5

QF_ABV 0 2 3 0 5

QF_UFLIA 1 2 1 0 4

QF_NIRA 1 0 0 3 4

QF_ABVFP 0 0 3 0 3

Sequences 0 1 2 0 3

QF_AUFLIA 0 3 0 0 3

QF_AUFBVLIA 0 2 1 0 3

ALRA 0 0 2 0 2

QF_UFIDL 0 0 1 0 1

AUFNIRA 0 1 0 0 1

NIRA 0 0 1 0 1

ALIA 0 0 0 1 1

QF_ALIA 1 0 0 0 1

UFBV 0 0 1 0 1

UFNIRA 0 0 1 0 1

QF_UFLRA 0 0 1 0 1

QF_UFNRA 0 1 0 0 1

Total 33 27 209 20 289

(b) CVC4

Figure 4.7: Logic distribution of the confirmed bugs: (S) soundness bugs, (I)
invalid model bugs, (C) crash bugs, and (O) others. "Uncategorized"
refers to bugs that could not be associated with a single logic.

4.4 empirical evaluation 65

majority (575 out of 963) of bugs found by OpFuzz were found in the default
modes of the solvers, i.e., no additional options were supplied, some were
found with one or two additional options enabled, and clearly less bugs
with more than three options enabled (see Figure 4.6c).

We also examined the distribution of logics among the confirmed bugs of
Z3 and CVC4 (see Figure 4.7a and 4.7b). We observe that most soundness
bugs in Z3 are in the string logics QF_S (133), QF_SLIA (44) and nonlinear
logics NRA (20), QF_NRA (8). Notably, there are also a number of soundness
bugs in bitvectors QF_BV (8) and linear real and integer arithmetic QF_LRA
(4), QF_LIA (6), LIA (6). Similar to Z3, most soundness bugs in CVC4 are
also in the string logic QF_S (6) and nonlinear arithmetic QF_NRA (3).
Moreover, there are three soundness bugs in set logics.

code coverage of opfuzz’s mutations Code coverage is a refer-
ence for the sufficiency of software testing. This experiment aims to answer
whether the mutants generated by OpFuzz can achieve higher coverage than
the seed formulas. We randomly sampled 1000 formulas (Seeds1000) from
all formulas that we used for stress-testing SMT solvers. We instantiated
OpFuzz with n = 300, run OpFuzz on the seeds Seeds1000 and then measure
the cumulative line/function/branch coverage over all formulas and runs.2

For all coverage measurements, we used Gcov3 from the GCC suite.
The results show that OpFuzz increases the code coverage upon Seeds1000

(Figure 4.8). Z3 and CVC4 have over 436K LoC and 238k LoC respectively,
so that 0.1% improvement already translates to hundreds of additionally
covered lines. However, although noticeable, the coverage increments are
not significant (≤ 0.5%). A partial explanation is that decision procedures
of Z3 and CVC4 are highly recursive. This leads to many calls of the
same functions with different arguments. Hence the difference in line/func-
tion/branch coverage achieved by different formulas of the same theory,
may not be as significant. This experiment also provides further evidence
that standard coverage metrics (e.g., statement and branch coverages), al-
though useful, are insufficient for measuring the thoroughness of testing.
Indeed, such small coverage increases led to 1,254 new bugs in two of the
most mature, widely used SMT solvers.

execution trace comparison Since code coverage could not thor-
oughly explain the effectiveness of OpFuzz, we also examine the internals

2 This makes a total of 300k runs.
3 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

66 type-aware operator mutation

Z3 CVC4

lines functions branches lines functions branches

Seeds1000 33.2% 36.2% 13.7% 28.5% 47.1% 14.3%

OpFuzz 33.5% 36.4% 13.8% 28.8% 47.4% 14.4%

Figure 4.8: Line, function and branch coverage achieved by the baseline Seeds1000
versus OpFuzz on Z3 and CVC4’s respective source codes.

of the solvers by investigating the similarity of their execution traces upon
type-aware operator mutations. What is the relative similarity of the execution
traces with respect to the seed? In the following experiment, we approach
this question. In Z3 and CVC4, we can obtain an execution trace by setting
the flags TRACE=True and --trace-theory respectively. Before describing this
experiment, we first show the format of Z3’s and CVC4’s respective traces
via an example. Consider formula φ and its type-aware operator mutation
φmutant (see Figure 4.9a and 4.9d). Figure 4.9c and 4.9e shows Z3’s and
CVC4’s traces on solving φ respectively, Figure 4.9d and 4.9f show Z3’s and
CVC4’s traces on solving φmutant respectively.

Having obtained an intuition of the execution traces, we now get to
the actual experiment. Our aim is to measure the relative change in the
execution traces of Z3 and CVC4. We therefore perform 40 mutation steps
for every formula in Seeds1000 and record the execution trace triggered in
each step. To quantify the similarity of two traces t1 and t2, we compute a
metric sim(t1, t2) with

sim(t1, t2) =
2 · |LCS(t1, t2)|

#lines(t1) + #lines(t2)

where LCS(t1, t2) corresponds to the longest common subsequence of t1
and t2; #lines(t1) and #lines(t2) are the number of lines in t1 and t2 respec-
tively. As an example, re-consider Figure 4.9. The differing lines of φ’s trace
and φmutant’s trace are shaded. φ’s Z3 trace and φmutant’s Z3 trace match
in 10 out of 11 lines and therefore their similarity score is 10

11 . For the trace
pair of CVC4, the number of longest common subsequence is of length 3

and hence the similarity of Z3’s trace is 1
2 . To compute the longest common

subsequence, we used the difflib4 package from python’s standard library.
Note that type-aware operator mutation may rename the AST node identi-

4 https://docs.python.org/3/library/difflib.html

4.4 empirical evaluation 67

1 ;phi
2 (declare-fun a () Real)
3 (declare-fun b () Real)

4 (assert (< a 0))

5 (assert (< b 0))
6 (check-sat)
7

(a)

1 ;phi_mutant
2 (declare-fun a () Real)
3 (declare-fun b () Real)

4 (assert (> a 0))

5 (assert (< b 0))
6 (check-sat)
7

(b)

1 [mk-app] #23 a
2 [mk-app] #24 Int
3 [attach-meaning] #24 arith 0
4 [mk-app] #25 to_real #24

5 [mk-app] #26 < #23 #25

6 [mk-app] #27 Real
7 [attach-meaning] #27 arith 0
8 [inst-discovered] theory-solving 0
9 arith# ; #25

10 [mk-app] #28 = #25 #27
11 [instance] 0 #28
12 [attach-enode] #28 0
13

(c)

1 [mk-app] #23 a
2 [mk-app] #24 Int
3 [attach-meaning] #24 arith 0
4 [mk-app] #25 to_real #24

5 [mk-app] #26 > #23 #25

6 [mk-app] #27 Real
7 [attach-meaning] #27 arith 0
8 [inst-discovered] theory-solving 0
9 arith# ; #25

10 [mk-app] #28 = #25 #27
11 [instance] 0 #28
12 [attach-enode] #28 0
13

(d)

1 TheoryEngine::assertFact

2 (not (>= b 0.0)) (0 left)

3 Theory<THEORY_ARITH>::assertFact[1]

4 ((not (>= a 0.0)), false)

5 TheoryEngine::assertFact
6 ((not (>= b 0.0)))
7 Theory<THEORY_ARITH>::assertFact[1]
8 ((not (>= b 0.0)), false)

9 Theory::get() =>

10 (not (>= a 0.0))(1 left)

11 Theory::get() =>
12 (not (>= b 0.0)) (0 left)
13

(e)

1 TheoryEngine::assertFact

2 ((not (>= (* (- 1.0) a) 0.0)))

3 Theory<THEORY_ARITH>::assertFact[1]

4 ((not (>= (* (- 1.0) a) 0.0)), false)

5 TheoryEngine::assertFact
6 ((not (>= b 0.0)))
7 Theory<THEORY_ARITH>::assertFact[1]
8 ((not (>= b 0.0)), false)

9 Theory::get() =>

10 (not (>= (* (- 1.0) a) 0.0)) (1 left)

11 Theory::get() =>
12 (not (>= b 0.0)) (0 left)
13

(f)

Figure 4.9: Left column: (a) seed formula φ (b) Z3 trace snippet of φ and (c) CVC4

trace snippet of φ. Right column: (d) type-aware operator mutant
φmutant (e) Z3 trace snippet of φmutant (f) CVC4 trace snippet of φmutant
of φ. Differences are shaded.

68 type-aware operator mutation

1 5 10 15 20 25 30 35 40

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

Z3

1 5 10 15 20 25 30 35 40

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

CVC4

Figure 4.10: Average similarity of consecutively generated mutants (y-axis) per
mutation step (x-axis). y-axis: represents the similarity between
the mutant generated in the corresponding mutation step and the
original formula in Z3 and CVC4. x-axis: mutation step.

fiers of Z3’s trace. Here, we under-approximate the similarity of Z3 traces
by considering the identifier renaming as the change of the trace.

In our experiment, we fix the trace of the original formula to be t1, and
t2 corresponds to the trace triggered by the mutant. Figure 4.10 shows the
similarity of the corresponding mutation step averaged over all formulas in
Seeds1000. The results of Z3 and CVC4 consistently show that along with a
gradual mutation step increase, the similarity between the traces triggered
by the mutant and the original formula gradually decreases. The result
indicates that OpFuzz can generate diverse test cases that trigger different
execution traces via type-aware operator mutation.

takeaways We designed three quantitative evaluations to measure and
gain an intuition about the effectiveness of OpFuzz. First, we observe that
OpFuzz can find a significant number of bugs in various logics, solver
configurations, most of which are in default mode. Second, to understand
why OpFuzz can find so many bugs, we designed a coverage evaluation.
The evaluation result shows that OpFuzz can increase coverage, but the
increment is minor. As the coverage evaluation did not answer why OpFuzz

4.5 in-depth bug analysis 69

is effective, we further designed the third evaluation investigating the
similarity of execution traces. The trace evaluation shows that OpFuzz
can gradually change the execution traces of the solvers, which partially
explains the effectiveness of OpFuzz.

4.5 in-depth bug analysis

Having extensively evaluated OpFuzz, this section presents an in-depth
study on OpFuzz’s bug findings. We (1) quantify the fixing efforts for Z3’s
and CVC4’s developers, (2) identify weak components in Z3 and CVC4, and
(3) examine the file sizes of bug-triggering SMT formulas. We summarize
the insights gained and then present selected bug samples, and examine
their root causes, along with the developer’s fixes.

4.5.1 Quantitative Analysis

We collected all GitHub bug reports that we filed in our extensive evaluation
of OpFuzz. This data serves as the basis for our analysis. We guide our
analysis with three research questions.

RQ1: How much effort did the developers take to fix bugs found by OpFuzz?

To approach this question, we consider two metrics: the files affected by a
bug fix and the number of lines of code (LoC) for fixing. If a bug causes
many lines of code and/or file changes, this may indicate a high effort
for the developers to fix the bug. To examine the LoC and file changes
for the bugs found by OpFuzz, we collected 377 bug fixing commits in
Z3 and 101 bug fixing commits in CVC4. We solely considered commits
that could be one-to-one matched to their bug reports i.e., the commit log
exclusively mentions the issue of our bug report. Figure 4.11 shows the
distributions of file changes for bug-fixing commits in Z3 (left) and CVC4

(right). We observe that, in both solvers, most bug-fixing commits change
less than five files, and the single file fixes are the majority. However, a few
commits affected many files. We have manually examined the right tail of
the distribution. We specifically present the top-2 file changing commits
in both Z3 and CVC4 individually to demonstrate exemplary reasons for
major changes in Z3 and CVC4. We begin with Z3. The highest-ranked bug-
fixing commit in Z3 triggered 65 changes. The main part of this fix was in

70 type-aware operator mutation

1 2 3 4 5 6 7 8 9 11 13 17 55 65

0

100

200 185

81

46

19 22
7 4 5 1 3 1 1 1 1

#File changes

#
C
om

m
it
s

1 2 3 4 5 6 13 18

0

20

40

60
59

24

6 6 3 1 1 1

#File changes

#
C
om

m
it
s

Figure 4.11: Distribution of the number of files affected by a single bug-fixing
commit. Z3 (left) and CVC4 (right).

"smt/theory_bv.cpp" which is the implementation of bit-vector logic and also
serves as the low-level implementation for floating-point logic. The devel-
opers’ fix resulted in many function name updates, added checkpoints, and
additional 64 file changes. Another bug-fixing commit in Z3 that affected
55 files is a crash. It was caused by an issue in Z3’s abstract syntax tree. The
core issue addressed by this fix was in "ast/rewriter/rewriter_def.h" and
"ast/rewriter/th_rewriter.cpp". Reorganizations of the assertion checks
triggered additional 54 file changes. In CVC4, the top-2 fixes with the most
file changes (18 and 13) are both caused by crash bugs affecting string
operators. The first bug is due to the unsound variable elimination that
triggered the assertion violation. The fix refactored the variable elimination
with 295 LoC changed. For fixing the second bug, the developers added
support for the regex operators re.loop and re.ˆ that were recently added
to the theory of strings. As an intermediate conclusion, we observe that al-
though a relatively high number of file changes indicate extensive revisions
in the SMT solvers Z3 and CVC4, their root causes are often rather simple
fixes such as updating function names, adding assertions, etc. We therefore
also investigate the LoC changes for each bug-fixing commit. Many simple
fixes, on the other hand, exhibit subtle missed corner cases. However, the
higher numbers of changed files are sometimes caused by the updating of
the function names, adding new assertions, and so on. Thus, to be com-
prehensive, we also analyze the commits by their LoC changes. The crash
bug leads to the updating of the CVC4 support for new string standard
of operators re.loop and re.ˆ, which changes 13 files. The fix with 6 file
changes in CVC4 is also for a crash bug. The one with 55 file changes in
Z3 is the fix for a crash bug due to the abstract syntax tree issue. that are
related to the formula rewriters. The fix with 13 file changes in CVC4 is

4.5 in-depth bug analysis 71

0-
10

10
-2

0

10
0-

20
0

20
-3

0

20
0-

30
0

30
-4

0

30
0-

40
0

40
-5

0

40
0-

50
0

50
-6

0

50
0+

60
-7

0
70

-8
0

80
-9

0
90

-1
00

0

50

100

150

200

163

63

18

44

7
21

2
16

1
9

1
13 10 7 2

#LOC changes

#
C
om

m
it
s

0-
10

10
-2

0

10
0-

20
0

20
-3

0

20
0-

30
0

30
-4

0

30
0-

40
0

40
-5

0
50

-6
0

50
0+

60
-7

0
70

-8
0

80
-9

0
90

-1
00

0

10

20

30

40
34

25

2

9

45
34 3 22 3 3 2

#LOC changes

Figure 4.12: LoC changed by a single commit in Z3 (left) and CVC4 (right).

related to a crash bug report. It changed various files related to quantifiers.
As the investigations show, the relatively higher numbers of changed files
indicate the extensive revision of the solvers. However, the higher numbers
of changed files are sometimes caused by the updating of the function
names, adding new assertions, and so on. Thus, to be comprehensive, we
also analyze the commits by their LoC changes.

Figure 4.12 presents the distributions of the LoC changes for each bug-
fixing commit. For both Z3 and CVC4, we observe that most commits have
less than 100 LoC changes and many bug fixes only involve a 0-10 LoC
change. We have manually inspected all 0-10 LoC fixes and observed the
majority of them are subtle corner cases. Again we examine top-2 commits
for each solver. In Z3 these have 572 and 332 LoC changes respectively.
The 572 LoC change commit is a fix for a soundness bug in string logic. It
leads to an extensive change in the rewriter of the sequential solver. The 481

LoC changes commit is a fix for a soundness bug in non-linear arithmetic
logic. The fix was systematically revamping the decoupling of monomials
in non-linear arithmetic logic. For CVC4, the top-2 commits have 1,162
and 588 LoC changes respectively. The 1,162 LoC change in CVC4 commit
fixes a crash bug by systematically removing the instantiation propagator
infrastructure of CVC4. The developer commented that they will redesign
this infrastructure in the future. The bugfix with 588 LoC changes is fixing
a soundness bug which is labeled as "major" in CVC4’s issue tracker. The
bug is due to a buggy ad-hoc rewriter that was incorporated into CVC4’s
extended quantifier rewriting module. The fix deleted the previous buggy
rewriting steps and re-implemented an alternative rewriter. Compared
to the analysis of file changes, commits with high LoC have a stronger

72 type-aware operator mutation

correlation with interesting and systematic fixes in the SMT solvers. On
average, the bugs found by OpFuzz led to 34 and 63 LOC changes for each
commit in Z3 and CVC4 respectively.

File #Commits

smt/theory_seq.cpp 33

smt/smt_context.cpp 30

smt/theory_lra.cpp 25

qe/qsat.cpp 16

ast/ast.cpp 16

smt/theory_arith_nl.h 15

ast/rewriter/seq_rewriter.cpp 14

ast/rewriter/rewriter_def.h 12

tactic/arith/purify_arith_tactic.cpp 11

smt/theory_seq.h 11

(a)

Filename #LoC changes

smt/theory_seq.cpp 1082

ast/rewriter/seq_rewriter.cpp 837

smt/theory_arith_nl.h 637

smt/theory_lra.cpp 434

tactic/ufbv/ufbv_rewriterċpp 375

math/lp/emonics.cpp 333

smt/smt_context.cpp 265

smt/theory_recfun.cpp 247

tactic/core/dom_simplify_tactic.cpp 229

tactic/arith/purify_arith_tactic.cpp 224

(b)

File #Commits

theory/arith/nonlinear_extension.cpp 7

theory/strings/theory_strings.cpp 6

preprocessing/passes/unconstrained_simplifier.cpp 5

theory/arith/nl_model.cpp 5

smt/smt_engine.cpp 5

theory/quantifiers/extended_rewriter.cpp 4

theory/quantifiers/quantifiers_rewriter.cpp 4

theory/quantifiers_engine.cpp 3

theory/quantifiers/instantiate.cpp 3

theory/arith/nonlinear_extension.h 3

(c)

Filename #LoC changes

theory/quantifiers/inst_propagator.cpp 864

theory/quantifiers/quantifiers_rewriter.cpp 611

theory/arith/nonlinear_extension.cpp 519

theory/strings/regexp_operation.cpp 292

theory/quantifiers/local_theory_ext.cpp 270

theory/strings/theory_strings.cpp 250

theory/arith/nonlinear_extension.h 212

preprocessing/passes/int_to_bv.cpp 201

theory/quantifiers/inst_propagator.h 194

smt/smt_engine.cpp 130

(d)

Figure 4.13: Top-10 (a) files affected by bug fixing commits in Z3. (b) LoC changes
per file in Z3 (c) files affected by bug fixing commits in CVC4. (d)
LoC changes per file in CVC4.

RQ2: Which parts/files of Z3’s and CVC4’s codebases are most affected by the fixes?

In this research question, we investigate the influence of OpFuzz’s bug
findings on the respective codebases of Z3 and CVC4. For this purpose,
we use two metrics. First, the number of bug-fixing commits that changed
a specific file f in either Z3’s or CVC4’s codebase, i.e., in how many bug-

4.5 in-depth bug analysis 73

fixing commits file g was included. The second metric is the cumulative
number of LoC changes for a file f caused by fixes in either Z3’s or CVC4’s
codebase. For each file f we add up additions and deletions.

In general, there are 103 files in CVC4 and 348 files in Z3 are affected
by the fixes of our bugs. Figure 4.13 shows a top-10 ranking of files in
Z3’s (top row) and CVC4’s codebase (bottom row) concerning the two
metrics. We observe that in both Figure 4.13a and Figure 4.13b, most
files belong to the "smt" directory which contains the core implementa-
tions of Z3. Strikingly, the files "smt/theory_seq.cpp" (Z3’s sequence and
string solvers), "smt/theory_arith_nl.h" (Z3’s non-linear arithmetic solver)
and "smt/theory_lra.cpp" (Z3’s linear arithmetic solver) are ranked in the
top-6 in both #Commits and #LoC changes rankings. This suggests that
many of OpFuzz bug findings lead to the fixes in the core components of
Z3. Besides files from the "smt" directory, the remaining files are mostly
part of Z3’s "tactic" and "ast" directories. These contain the implemen-
tations of solver the front-end and Z3’s solving tactics. Note, several for-
mulas rewriters related files such as files "ast/rewriter/seq_rewriter.cpp",
"ast/rewriter/rewriter_def.h" and "tactic/ufbv/ufbv_rewriter.cpp" are also
highly ranked in the top-10 files affected by the fixes. We now turn our at-
tention to CVC4. Consider the bottom row of Figure 4.13b that presents file
and LoC rankings in CVC4. The files that are related to quantifiers (under
the path "theory/quantifiers") are the majority in both rankings. Besides,
the files "nonlinear_extension.cpp", "theory_strings.cpp" and "quantifiers_

rewriter.cpp" are listed in both rankings. The file "nonlinear_extension.cpp"

was the implementation of the non-linear arithmetic solver, and a recent
pull request moved the core of the non-linear arithmetic solver elsewhere.
The file "quantifiers_rewriter.cpp" contains the implementations of quan-
tifier rewriters that caused soundness bugs, as RQ1 revealed. The file
"theory_strings.cpp" contains the decision procedures for string logic in
CVC4. Moreover the model generator of non-linear arithmetic ("nl_model
.cpp") and the pre-processor ("int_to_bv.cpp", "unconstrained_simplifier
.cpp") are also heavily influenced by bug fixes.

RQ3: What is the file-size distribution of the bug-triggering formulas?

In this research question, we investigate the file-size distribution of reduced
bug-triggering formulas. We collected the bug-triggering formulas from
all confirmed and fixed Z3 and CVC4 bug reports we filed. Figure 4.14

presents the distribution of bug-triggering formulas collectively for Z3 and

74 type-aware operator mutation

0-
10

0
10

0-
20

0

1K
-2

K

20
0-

30
0

2K
-3

K

30
0-

40
0

3K
-4

K

40
0-

50
0

4K
-5

K

50
0-

60
0

5K
+

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

1K

0

100

200

300

154

270

24

122

11

59

8
35

1
20

511 14 8 5

Formula sizes (bytes)

#
Fo

rm
ul

as

Figure 4.14: File-size distribution of reduced bug-triggering formulas.

CVC4. According to Figure 4.14, most formulas have less than 600 bytes,
while the range of 100-200 bytes has the highest formula count. The formula
with 19,473 bytes triggered a crash bug in CVC4.

The top-3 smallest bug-triggering formulas have 21, 30, and 34 bytes
respectively. The 21-byte formula is an invalid formula that triggers a crash
bug in Z3. Crash-triggering formulas are 30 bytes and 34 bytes in size for
Z3 and CVC4, respectively. These three bugs were all fixed promptly, i.e.,
in less than one day, which is significantly faster than the bugs triggered by
the top-3 largest formulas. The average size of the bug-triggering formulas
reported is 426 bytes, which is usually small enough for the developers.

4.5.2 Insights

insight 1 : opfuzz’s bugs are of high quality RQ1 and RQ2

have shown that OpFuzz’s bug findings have not only led to non-trivial file
and LoC changes in both CVC4 and Z3 but also motivated the developers to
reorganize and redesign some parts of the solvers. Systematic infrastructure
changes such as the decoupling of the monomial instantiation propagator
show this. Furthermore, OpFuzz’s bugs affected core implementations of the
SMT solvers Z3 and CVC4. As RQ2 presented, the "smt" directory in Z3 and
"theory" directory in CVC4, solvers are among the most affected. Besides,
the bugs also affected various pre-processors and rewriter components.
Third, the bug-triggering formulas that OpFuzz found could be reduced to
reasonable file sizes (see RQ3).

4.5 in-depth bug analysis 75

insight 2 : weak components in z3 and cvc4 From the rankings
in RQ2, we identify several "weak" components in Z3 and CVC4. First,
in both Z3 and CVC4, source files for the non-linear arithmetic solvers
rank high. This indicates: decision procedures for non-linear arithmetic are
among the weak components in SMT solvers. Apart from these, rewriters
are weak components as well. Z3’s "rewriter_def.h", "ufbv_rewriter.cpp"
and "seq_rewriter.cpp" are among the top-10 in LoC changes. In CVC4, the
quantifier rewriter "quantifiers_rewriter.cpp" is ranked high (5th and 2nd
in Figure 4.13c and Figure 4.13d respectively). In Z3, we identified the tactics
to be a weak component. Among the filed bug reports, there are 126 includ-
ing reports related to tactics. In Figure 4.13, these are "purify_arith_tactic.

cpp" and "dom_simplify_tactic.cpp" which are ranked 9th or 10th in both
Figure 4.13a and Figure 4.13b. In Figure 4.13b, for Z3, the rewriter related
files "rewriter_def.h", "ufbv_rewriter.cpp" and "seq_rewriter.cpp" exist in
the top-10 rankings. In conclusion, the weak components of the solvers
we mentioned above should be rigorously tested (by OpFuzz and further
techniques), to uncover the potential issues of the solvers.

insight 3 : bugs found by opfuzz can usually be reduced to

small-sized formulas but bug reduction can be challenging

As we have observed (c.f. Figure 4.14), 90% of all bugs found by OpFuzz are
triggered by formulas of less than 600 bytes. Small-sized formulas facilitate
the bug-fixing efforts significantly. As we observed in RQ3, the top-3 largest
formulas took the developers around half a month while the top-3 smallest
formulas were fixed very fast, usually within just a few hours. However,
reducing SMT formulas to such small sizes can be challenging. ddSMT [81]
is the only specialized SMT formula reducer for that purpose which does
however not fully support the SMT-LIB 2.6 standard and formulas in string
logic. We, therefore, preferred C-Reduce, a C code reducer to reduce SMT
formulas. While C-Reduce was effective, bug reduction is challenging,
especially for formulas with high solving time.

4.5.3 Selected Bug Samples

This subsection details multiple bug samples from our extensive bug-
hunting campaign of Z3 and CVC4 and inspects the root causes.

figure 4 .15a shows a soundness bug in Z3’s bit-vector logic. The for-
mula is clearly unsatisfiable as the nested bvxnor expression equals the

76 type-aware operator mutation

1 (declare-const a (_ BitVec 8))
2 (declare-const b (_ BitVec 8))
3 (declare-const c (_ BitVec 8))
4 (assert (= (bvxnor a b c)
5 (bvxnor (bvxnor a b) c)))
6 (check-sat)

(a) Soundness bug in Z3 caused by a logic
in the handling of the ternary bvxnor.
https://github.com/Z3Prover/z3/issues/2832

1 (set-logic ALL)
2 (declare-fun x () Real)
3 (assert (< x 0))
4 (assert (not (=
5 (/ (sqrt x) (sqrt x)) x)))
6 (check-sat)

(b) Soundness bug in CVC4: inadmissible
reduction of the square root operator.
https://github.com/CVC4/CVC4/issues/3475

1 (declare-fun a () Int)
2 (declare-fun b (Int) Bool)
3 (assert (b 0)) (push)
4 (assert (distinct true
5 (= a 0) (not (b 0))))
6 (check-sat)

(c) Soundness bug in Z3 in the boolean
rewriter handling the distinct operator.
https://github.com/Z3Prover/z3/issues/2830

1 (set-logic QF_AUFBVLIA)
2 (declare-fun a () Int)
3 (declare-fun b (Int) Int)
4 (assert (distinct (b a)
5 (b (b a))))
6 (check-sat)

(d) Soundness bug in CVC4 due to a vari-
able re-use in a simplification.
https://github.com/CVC4/CVC4/issues/4469

1 (declare-fun a () String)
2 (declare-fun b () Int)
3 (assert (> b 0))
4 (assert (= (int.to.str b)
5 (str.++ "0" a)))
6 (check-sat)

(e) Soundness bug in Z3: a missing axiom
in the integer to string conversion.
https://github.com/Z3Prover/z3/issues/2721

1 (declare-fun x () String)
2 (declare-fun y () String)
3 (assert (= (str.indexof x y 1)
4 (str.len x)))
5 (assert (str.contains x y))
6 (check-sat)

(f) Soundness bug in CVC4 due to an in-
valid indexof range lemma.
https://github.com/CVC4/CVC4/issues/3497

1 (declare-fun a () Real)
2 (assert (forall ((b Real))
3 (= (= a b) (= b 0))))
4 (check-sat-using qe)

(g) Longstanding soundness bug in Z3’s
qe tactic (since version 4.8.5).
https://github.com/Z3Prover/z3/issues/4175

1 (declare-fun a () Real)
2 (assert (= (* 4 a a) 9))
3 (check-sat)
4 (get-model)

(h) Invalid model bug in CVC4: incorrect
implementation of the square root.
https://github.com/CVC4/CVC4/issues/3719

1 (declare-fun a () Int)
2 (declare-fun b () Real)
3 (declare-fun c () Real)
4 (assert (> a 0))
5 (assert (= (* (/ b b) c) 2.0))
6 (check-sat)
7 (check-sat)
8 (get-model)

(i) Invalid model bug in Z3.
https://github.com/Z3Prover/z3/issues/3118

1 (declare-fun d () Int)
2 (declare-fun b () (Set Int))
3 (declare-fun c () (Set Int))
4 (declare-fun e () (Set Int))
5 (assert (subset b e))
6 (assert (= (card b) d))
7 (assert (= (card c) 0 (mod 0 d)))
8 (assert (> (card (setminus e
9 (intersection (intersection e b)

10 (setminus e c)))) 0))
11 (check-sat)

(j) Soundness bug in CVC4’s set logic.
https://github.com/CVC4/CVC4/issues/4391

Figure 4.15: Selected bug samples in Z3 and CVC4.

https://github.com/Z3Prover/z3/issues/2832
https://github.com/CVC4/CVC4/issues/3475
https://github.com/Z3Prover/z3/issues/2830
https://github.com/CVC4/CVC4/issues/4469
https://github.com/Z3Prover/z3/issues/2721
https://github.com/CVC4/CVC4/issues/3497
https://github.com/Z3Prover/z3/issues/4175
https://github.com/CVC4/CVC4/issues/3719
https://github.com/Z3Prover/z3/issues/3118
https://github.com/CVC4/CVC4/issues/4391

4.5 in-depth bug analysis 77

unnested bvxnor expression. However, Z3 reports unsat on it, which is in-
correct. The root cause for this bug is an incorrect handling of the ternary
bvxnor in Z3’s bitvector rewriter "bv_rewriter.cpp". The bvxnor was imple-
mented as the negation of the bvxor operator. This is correct in the binary
case, however, incorrect for the n-ary case. To see this consider, e.g., for the
assignment a = b = c = true:

(bvxnor a b c) ̸= (not (bvxor a b c))

(bvxnor (bvxnor true true) true) ̸= (not (bvxor (bvxor true true) true))

true ̸= false

In the fix, Z3 developers recursively reduces n-ary bvxnor expression to the
binary case. The fix led to a 17 LoC change in ast/rewriter/bv_rewriter.cpp.

figure 4 .15b shows a soundness bug in the implementation of the
symbolic square root in CVC4. The formula can be satisfied by assigning
an arbitrary negative real to variable x. CVC4 incorrectly reported unsat on
this formula. The root cause for this bug is an inadmissible reduction of the
square root expression (sqrt x) to "choice real y s.t. x = y · y". For negative
x, there is no y to satisfy the equation. However, square roots of negative
numbers are permitted by the SMT-LIB standard. CVC4’s developers fixed
this bug by interpreting square roots of negative numbers as an undefined
value that can be chosen arbitrarily. For the formula in Figure 4.15b, the
term (/ (sqrt x) (sqrt x)) can be arbitrarily chosen, as the second assert
demands x to be negative. Therefore, the formula in Figure 4.15b is satisfi-
able. The bug-fixing pull request was labeled as "major" which reveals that
this issue was of high importance to the CVC4 developers. The fix led to a
126 LoC change on 5 files.

figure 4 .15c is a soundness bugs in Z3. Although the second assert
is unsatisfiable (as true cannot be distinct with (not (b 0)), Z3 reported
sat on this formula. The bug is caused by a logic error in a loop condition
of a rewriting rule for the distinct operator. An incorrect index condition
accidentally skips the last argument in an n-ary distinct. The push command
is necessary for triggering the bug, as it actives the rewriter for distinct. The
developer has fixed this bug by correcting the index condition. Hence, his fix
consisted of only two character deletes in ast/rewriter/bool_rewriter.cpp.

figure 4 .15d shows a soundness bug in CVC4’s logic of uninterpreted
functions In default mode, CVC4 incorrectly reports unsat on this satisfiable

78 type-aware operator mutation

formula. If we disable unconstrained simplification (-no-unconstrained-simp),
CVC4 correctly reports unsat. The bug is caused by an unsound variable
reuse. Our bug report got a "major" label from CVC4’s developers and was
promptly fixed. The fix consists of 3 LoC deletions in the unconstrained sim-
plifier implementation "preprocessing/passes/unconstrained_simplifier.cpp".

figure 4 .15e depicts a soundness bug in Z3’s QF_SLIA logic. The
formula is unsatisfiable, since if assertion b > 0 holds, there does not exist
an a starting with "0". However, Z3 reports sat on this formula. The
developers fixed this issue by adding an axiom.

figure 4 .15f shows a soundness in CVC4’s string logic. The intuition
behind this formula is the following. The index of string y in x after position
1 should be equal to the length of string x. Furthermore x should contain
y. The formula can be satisfied by setting y to the empty string and x to a
string of length 1. However, CVC4 incorrectly reports unsat. The root cause
was a logic error in theory/strings/theory_strings.cpp. The developer’s fix
changed three characters in theory/strings/theory_strings.cpp.

figure 4 .15g presents a long-standing soundness bug in Z3’s qe tactic.
It affects z3 release from version 4.8.5 to 4.8.7. The qe tactic is an equisatis-
fiable transform for eliminating quantifiers. Hence, the satisfiability should
not be changed by using the qe tactic. The formula is satisfiable by assigning
a to 0, while Z3’s qe tactic reports unsat. The bug has been confirmed by
Z3’s developers but has not been fixed yet.

figure 4 .15h shows an invalid model bug in CVC4. CVC4 correctly
reports sat but generates the model {a 7→ −9

2 } which does not satisfy the
formula. The bug is caused by CVC4’s implementation of the square root.
A logic error assigns the result of the square root to be the square root’s
argument. The fix is labeled as "major" by the developers, and promptly
fixed only with a two LoC change in file theory/arith/nl_model.cpp.

figure 4 .15i shows an invalid model bug in Z3. The (check-sat) com-
mand appears twice in the formula. This means that Z3 is queried twice for
solving. Z3 reports unknown for the first query and sat for the second. In
the second query, Z3 gives the following invalid model {a 7→ 0, b 7→ 0.0, c 7→
16.0, 0

0 7→
1
8} violating (> a 0). The developers fixed this bug through three

LoC changes in file solver/tactic2solver.cpp.

4.6 related work 79

figure 4 .15j presents a soundness bug in CVC4’s set logic. CVC4 re-
turns unsat on this satisfiable formula. The root cause is an incorrectly
implemented set cardinality rule in the cardinality extension of CVC4.
CVC4’s set solver uses lemmas to guess the equalities for terms by iden-
tifying cycles of terms e1 = · · · = e2 = · · · = e2. CVC4 has incorrectly
assumed that these cycles are loops and in that case, would conclude
e1 = · · · = e2. However, the cycles could have a lasso form which was
triggered by our formula. The developers fixed this issue, included the
formula to CVC4’s regression test suite, and marked the pull request to be
critical for CVC4’s 1.8 release. The fix was labeled as "major" and made 9

LoC changes theory/sets/cardinality_extension.cpp.

4.6 related work

testing smt solvers This is not the first work on testing SMT solvers.
Roughly ten years ago, the fuzzing tool FuzzSMT [60] was proposed, which
is based on differential testing and targeted bit-vector logic. FuzzSMT uses
a grammar for generating the SMT formula. FuzzSMT totally found 16
solver defects in five solvers, however, none in Z3. BtorMBT [61] is a testing
tool for Boolector [62], an SMT solver for the bit-vector theory. BtorMBT
tests Boolector by generating random valid API call sequences.

The efforts of the SMT-LIB initiative [47] have resulted in formalized SMT
theories and common input/output file formats. In addition, the yearly
solver competition SMT-COMP heavily penalized solvers with soundness
issues. Consequently, SMT solvers have robustified and finding bugs in
SMT solvers became more difficult. Researchers have hence targeted the
less mature logics such as the recently proposed theory of strings. Blotsky
et al. [56] proposed StringFuzz which focuses on performance issues in
string logic. StringFuzz generates test cases in two ways, one is mutating
and transforming the benchmarks, and another one is randomly generating
formulas from a grammar. StringFuzz found 2 performance bugs and 1
implementation bugs in z3str3. Bugariu and Müller [63] proposed a formula
synthesizer for String formulas that are by construction satisfiable or unsat-
isfiable. They showed that their approach can detect many existing bugs in
String solvers and they found 5 new soundness/incorrect model bugs in
z3 and z3str3. However, it remained an open question whether automated
testing tools could find bugs in theories except for the unicode string theory
in Z3 and CVC4. Recently, semantic fusion [1] has been proposed which
is an approach to stress-test SMT solvers by fusing formula pairs that are

80 type-aware operator mutation

by construction either satisfiable or unsatisfiable. Winterer, Zhang, and
Su’s tool YinYang found a few dozen bugs in Z3 and CVC4. STORM [32],
another mutation-based SMT solver testing approach, found 27 bugs in Z3,
however none in CVC4. Another related approach is BanditFuzz [58], an
RL-based fuzzer to detect SMT solver performance issues.

Compared to previous work, type-aware operator mutation is the sim-
plest, while it has also been demonstrated to be the most effective technique
for testing SMT solvers. Type-aware operator mutations show a promising
direction for testing SMT solvers which can benefit the whole community.

testing program analyzers SMT solvers are fundamental tools
for various program analyzers. Hence, bugs in SMT solvers may affect the
reliability of program analyzers. Especially because program analyzers have
become mature for practical use in recent years, ensuring the reliability
of program analyzers is crucial [48]. There are several works on program
analyzer’s robustness. For example, Zhang et al. [64] tested software model
checkers via reachability queries, Bugariu et al. [68] found soundness and
precision bugs in numerical abstract domains, Qiu et al. [69] and Pauck
et al. [70] found bugs in the analyzers of Android apps. Type-aware operator
mutation contributes to testing program analyzers by finding bugs in SMT
solvers. Differential testing-based approaches have been effective in finding
bugs in program analyzers. For example, Klinger et al. [65] and Kapus and
Cadar [66] proposed the approaches for testing software model checkers
and symbolic executors respectively using differential testing, Wu et al. [67]
tested alias analyzers by cross-checking the dynamic aliasing information.
OpFuzz likewise uses differential testing to detect soundness bugs.

mutation-based testing Type-aware operator mutation belongs to
the family of mutation-based testing techniques. The closest work is skeletal
program enumeration (SPE) [82], an approach for validating compilers. Sim-
ilar to type-aware mutation testing, program skeletons are generated from
a set of seed programs. The holes in these skeletons are then systematically
filled by exhaustive enumeration. However, unlike type-aware operator
mutation, SPE focuses on program variables and not on functions. SPE
provides relative guarantees with respect to the input seed programs.

Type-aware operator mutation is also related to FuzzChick [83], a coverage-
guided fuzzer for Coq programs. FuzzChick generates test cases by semantic
mutations at the type level. FuzzChick is aware of parameter types and
generates new values for the parameters while preserving type-correctness.

4.6 related work 81

Type-aware operator mutation, on the other hand focuses on the operators’
types and to generate highly diverse SMT formulas.

Type-aware operator mutation also belongs to black-box fuzzing tech-
niques. The black-box fuzzing techniques, such as SYMFUZZ [84], leverage
user-provided seeds and generate new mutated inputs to uncover security
issues. Grey-box fuzzing enhances black-box fuzzing by code coverage guid-
ance and has been successfully applied to software testing recently. AFL [85]
is a popular tool for binary grey-box fuzzing. Follow-up works, such as
FairFuzz [86] and Steelix [87], improved the performance of AFL on the
binary level. However, binary-level fuzzing is ineffective on programs with
highly structured inputs (e.g. PDF viewers, programming language engines
etc.) because of the many syntactically invalid inputs being generated. To
generate valid test inputs, grammar-aware grey-box fuzzers were proposed.
AFLSmart [88], Superion [89] and Nautilus [90] are general grammar-aware
grey-box fuzzers targeting programming language engines. They use code
coverage to guide the grammar-aware mutations. As a key difference to
type-aware operator mutation, they both need to fully parse the program
and work on the abstract syntax tree level, which may lead to a higher
computational cost during fuzzing. Type-aware operator mutation, on the
other hand, works on the token level and without fully parsing the formula.

Besides general black-box and grey-box fuzzing, various domain-specific
fuzzing approaches exist, e.g., for testing compilers [72, 75, 82, 91, 92],
testing database management systems [93, 94, 95, 96], and testing OS
kernel [97, 98, 99]. Type-aware operator mutation is also a domain-specific
fuzzing technique that is unusually effective for testing SMT solvers.

5
G E N E R AT I V E T Y P E - AWA R E M U TAT I O N

This chapter presents Generative Type-Aware Mutation, a hybrid of mutation-
based and grammar-based fuzzing realized by our tool TypeFuzz. TypeFuzz
generalizes OpFuzz (Chapter 4) and can grow and shrink SMT formulas
overcoming a major limitation of OpFuzz. TypeFuzz is a highly effective
fuzzer: it found several long-latent soundness bugs in CVC4 that has proven
to be a very stable solver and has resisted several fuzzing campaigns.

5.1 motivation

Researchers devised several SMT solver fuzzers and a few large-scale
fuzzing campaigns on SMT solvers are ongoing. One such approach is
OpFuzz (Chapter 4) which found several hundreds of bugs in the SMT
solvers Z3 and CVC4. However, despite its effectiveness, OpFuzz has several
limitations. First, OpFuzz is limited by its finite mutation space: the seed
formulas have a fixed set of operators and for each of them, there are often
only 2-3 choices for mutation. Furthermore, as fuzzing campaigns and
especially OpFuzz have led to hundreds of bug fixes in the SMT solvers Z3

and CVC4, the solvers have matured. Because of this effect [100], fuzzers are
finding progressively fewer critical bugs. Yet, important bugs are missed.

Consider the formula in Figure 5.1 which manifests a long-latent sound-
ness bug in CVC4. The "declare-fun" statements specify two string variables
and one integer variable respectively, the "assert" specifies the constraints,
and the "check-sat" queries the solver. The formula is satisfiable which Z3

correctly reports. However, CVC4 returns unsat on this formula which indi-
cates a soundness bug in CVC4. This bug is long-latent: it existed in CVC4

since at least cvc4-1.5—for almost four years. 1 Moreover, since March 2019,
several large-scale fuzzing campaigns have targeted string logic (some even
exclusively), yet none of the other fuzzers found this bug. It is a refutational
soundness bug—the most critical bug category.

We introduce Generative Type-Aware Mutation, a novel, effective approach
for testing SMT solvers, capable of finding many longstanding soundness
bugs in both Z3 and CVC4. It has found the almost four-year latent sound-

1 cvc4-1.5 was released on July 10, 2017. This bug does trigger in all releases but cvc4-1.6.

83

84 generative type-aware mutation

(declare-fun x () String)

(declare-fun y () String)

(declare-fun z () Int)

(assert (= "B" (str.replace (str.substr "A" 0 z) ""

(str.replace "B" (str.substr "B" 0 0) (str.substr "A" 0 z)))))

(check-sat)

Figure 5.1: Almost four-year latent soundness bug in CVC4’s string logic.
https://github.com/cvc5/cvc5/issues/5940

ness bug of Figure 5.1. Moreover, with Generative Type-Aware Mutation,
we reported 322 bugs in the state-of-the-art SMT solvers Z3 and CVC4, 290

bugs were confirmed and 278 bugs were fixed. Most notably, Generative
Type-Aware Mutation found 20 soundness bugs in CVC4’s default mode
alone. Several of them (7/20) were at least 2 years latent and predated all
previous SMT solver fuzzing campaigns.

By comparison, prior approaches did not find any bugs in CVC4 [32, 63]
and others found similar numbers of soundness bugs during much longer
time spans: YinYang [101] found eight in nine months, and OpFuzz [2]
found eleven in a year. All approaches were reportedly using the SMT-LIB
seeds and similar resources as TypeFuzz did. TypeFuzz found these bugs
despite robustified Z3 and CVC4 thanks to the bug fixes that resulted
from prior fuzzing campaigns. The core idea behind Generative Type-Aware
Mutation is simple: to combine mutational and grammar-based type-aware
fuzzing. Given a seed formula φ, we first choose an expression expr within
φ. Second, we pick an operator op of the same type as expr and fill op’s
arguments with expressions from φ. The newly generated expression then
replaces expr in φ. The formula φmutant is then used to test SMT solvers.

5.2 illustrative example

The key idea of Generative Type-Aware Mutation is mutating expressions
in the AST of an SMT-LIB script by newly generated expressions of the
same type. Let φ be a seed formula (see Figure 5.2).

step 1 choose a random expression : We first choose a random ex-
pression expr1 from the set of φ’s expressions expr(φ). Say we have
picked the expr1 = x. The expression is of type String and will serve
as the replacee for the newly generated expression.

https://github.com/cvc5/cvc5/issues/5940

5.2 illustrative example 85

(declare-fun x () String)
(assert (> (- (str.to_int

(str.++ x x))) 0))

(check-sat)

expr1 ∈ { x , 0, (str.++ x x),· · ·}

(a) Choose random expression

op ∈ { str.from_int , str.++, · · ·}

(str.from_int Int String)

int ∈ { 0 , (str.to_int (str.++ x x)),

(- (str.to_int (str.++ x x)))}

(b) Choose operator & integer expression

op int

expr2 = (str.from_int 0)

(c) Generate new expression

(declare-fun x () String)
(assert (> (- (str.to_int

(str.++ (str.from_int 0) x))) 0))

(check-sat)

(d) Mutant formula φmutant (Z3#5108)

Figure 5.2: Generative Type-Aware Mutation illustrated.

step 2 choose a random operator : Next, we choose a suitable ran-
dom operator. Such an operator should have the return type String

and for all of its arguments, there should be at least one expression of
conforming type in expr(φ). Since φ contains terms of type Bool, Int,
and String, the operator’s arguments should be one of those types.
Candidates are the string to integer conversion function str.from_int,
the string concatenation str.++, and all other operators taking Bool,
String as arguments and returning Bool. For the complete list of possi-
ble candidates that we use, we refer the reader to Section 5.4. Assume
we have chosen the operator str.from_int.

step 3 generate new expression : Then, we generate an expression
expr2 with respect to the signature of the chosen operator. The signa-
ture for the operator str.from_int is defined as

(str.from_int Int String)

Hence, we select an Int expression from expr(φ). For the single pa-
rameter of type Int, we choose 0. Then, with the chosen operator and
expression, we construct the following new expression:

expr2 = (str.from_int 0)

https://github.com/Z3Prover/z3/issues/5108

86 generative type-aware mutation

step 4 substitution : Finally, we substitute expr1 by expr2 in φ which
results in the formula φmutant. We feed φmutant to two or more SMT
solvers and compare their results.

The formula φmutant is a real case. Z3 and CVC4 give different results on
φmutant. CVC4 correctly reported sat on it, while Z3 incorrectly reported
unsat. We have filed this bug on the Z3 issue tracker. The developers
promptly fixed this soundness issue in the trunk version of Z3. As we will
show, Generative Type-Aware Mutation is a powerful generalization of
type-aware operator mutation and FuzzChick. Neither approach could have
generated this bug-triggering formula from the seed φ.

5.3 generative type-aware mutation

This section (1) formally introduces Generative Type-Aware Mutation, (2)
shows the conditions under which Generative Type-Aware Mutation pro-
duces type-correct formulas, (3) clarifies the relationships to type-aware
operator mutation and FuzzChick, and (4) proposes TypeFuzz, a practical
fuzzing tool for stress-testing SMT solvers.

definitions We use standard notions of typed higher-order logic, such
as term, quantifier, and function and write expressions for term occurrences.
We view formulas as abstract syntax trees of typed expressions. Such an
expression expr has an associated type type(expr) and the set of all types is
types = {Bool, Int, Real, String, RegLan, A} where A is a generic supertype of
all the other types. For an expression expr in φ, we define locals(expr, φ) to
be the set of local variable occurrences in expr. When φ is clear from the
context, we simply write locals(expr). Within a formula φ, local variables
can be defined by quantifiers, let expressions, etc. By expr(φ), we denote
φ’s (enumerated) expression occurrences. We write φ[expr2/expr1] for the
substitution of expression expr1 by expression expr2 in φ. An operator op
has the attributes rtype(op) and the tuple arg_types(op) for op’s return type
and the types of op’s arguments. We denote the set of operators by ops and
opstype for all operators of return type type. The type skeleton skeleton(φ) of
φ is a tree where each expression expr in φ is represented by its type.

regular tree grammar A regular tree grammar G = (N, Σ, S, P) con-
sists of a finite set of nonterminals N, a ranked alphabet Σ, a starting
nonterminal S in N, and a finite set of productions P. Each symbol in Σ
has an associated arity, and the productions in P are of the form A → t

5.3 generative type-aware mutation 87

where A ∈ N and t ∈ TΣ with TΣ being the set of all trees composable from
symbols Σ ∪ N. The language L(G) generated by G describes any tree that
can be derived from S using the rule set P.

Definition 5.3.1 (Generative Type-Aware Mutation). Let GGTA = (N, Σ, S, P)
be a regular tree grammar and φ a formula:

• N = types
• Σ = expr(φ)

• S = skeleton(φ)

• P = Pexpr ∪ Pgen where

– Pexpr = {type→ expr | expr ∈ expr(φ) ∧ type(expr) = type}
– Pgen = {type→ (op arg_types(op)) | op ∈ opstype}

Formula φmutant ∈ L(GGTA) is called a generative type-aware mutant.

A generative type-aware mutant φmutant of φ can be conveniently fabri-
cated by replacing an expression expr1 within φ with an expression expr2
which is either another type-conforming expression from expr(φ), or rooted
with a new operator of type-conforming return type and type-conforming
arguments from expr(φ). Generative type-aware mutations will by design
not lead to type-incorrect replacements, e.g., replacing an integer expression
with a string expression. However, as the following example illustrates, they
also do not guarantee well-typed formulas. Consider the following formula
in SMT-LIB language:

φ = (and (> x 10) (forall ((z Int)) (< z y)))

We choose expr1 = (> x 10) and expr2 = (< z y) to replace expr1 by expr2
in φ. The resulting formula φmutant is a generative type-aware mutant of φ:

φmutant = (and (< z y) (forall ((z Int)) (< z y)))

However, φmutant is not well-typed since the variable z is out of the scope of
the quantifier. We address this issue by the following definition.

Definition 5.3.2 (local compatibility). Let expr1 and expr2 be two expres-
sions of the same type. We say expr2 is locally compatible with expr1 if
locals(expr2) ⊆ locals(expr1).

Checking for local compatibility avoids the above issue: locals(expr1) = ∅
and locals(expr2) = {z} and hence expr2 would not be locally compatible
with expr1 preventing the ill-typed formula.

Proposition 5.3.1. Generative type-aware mutants are well-typed if for every
substitution local compatibility is ensured.

88 generative type-aware mutation

5.3.1 Relationships to FuzzChick and Operator Mutation

This section clarifies the relationships between Generative Type-Aware
Mutation and two related techniques that have been used for stress-testing
software, FuzzChick and type-aware operator mutation.

fuzzchick’s mutator : FuzzChick [83] tests Coq programs using grammar-
based generators and coverage feedback. Adapted to our formal set-
ting, this corresponds to φmutant = φ[expr2/expr1] where expr1 and
expr2 are expressions from expr(φ).

type-aware operator mutation : OpFuzz [2] realizes type-aware op-
erator mutation, an effective technique for SMT solver testing. The
key idea is to mutate operators of conformant type. Let φ be an SMT
formula and let op1 of type type1 be one of φ’s operator and op2 of type
type2 be an operator of the SMT-LIB specification. φmutant = φ[op2/op1]
is a type-aware operator mutant if type2 is a subtype of type1.

Let formula φ be a formula and GGTA = (N, Σ, S, Pgen ∪ Pexpr) the regu-
lar tree grammar specifying generative type-aware mutations for φ. Fuz-
zChick’s mutator can be described by the grammar GFC = (N, Σ, S, Pexpr).
Since the grammar GFC is identical to GGTA without generation rules,
L(GFC) is a subset of L(GGTA). Every type-aware operator mutation φmutant =
φ[op2/op1] with op1, op2 from ops can be imitated by GGTA by starting from
the skeleton(φ) and applying the productions Pexpr to generate φ except for
op1. Then, we apply the production op1.type→ (op2 type1, · · · , typem) from
Pgen and again rules from Pexpr to recover the former arguments of op1.

Corollary 5.3.1. Generative Type-Aware Mutation generalizes FuzzChick.

Corollary 5.3.2. Generative Type-Aware Mutation generalizes Opfuzz.

The following example is a real case that constructively shows the strict
dominance of Generative Type-Aware Mutation over the type-aware opera-
tor mutation, the state-of-the-art approach for fuzzing SMT solvers.

Example 5.3.1. Consider formula φ from Figure 5.3a. Assume, we picked
the expression expr1 = (str.replace x "B" (str.++ "B" "B")) from expr(φ).
The expression is of type String and will serve as the replacee for the newly
generated expression. Next, we choose the operator str.replace that takes
three strings and returns a string. Then, we generate an expression:

(str.replace String String String String)

5.3 generative type-aware mutation 89

(declare-fun x () String)
(declare-fun y () String)
(assert

(= (str.replace x "B" (str.++ "B" "B"))

(str.++ y "B")))
(check-sat)

(a) Seed formula φ

(declare-fun x () String)
(declare-fun y () String)
(assert

(= (str.replace

(str.replace x "B" (str.++ "B" "B"))

"B" (str.++ y "B"))

(str.++ y "B")))
(check-sat)

(b) Mutant formula φmutant (CVC4 #5915)

Figure 5.3: Generative Type-Aware mutation illustrated.

by substituting the function arguments with type-aware expressions from
expr(φ) such as the following:

expr2 = (str.replace (str.replace x "B" (str.++ "B" "B")) "B" (str.++ y "B"))

Finally, we substitute expr1 by expr2 in φ which results in the formula
φmutant (Figure 5.3b). We feed φmutant to two or more SMT solvers and
compare their results. Z3 and CVC4 give different results on φmutant. Z3

correctly returned unsat on it while CVC4 returned sat on it. We have
reported this bug to the CVC4 issue tracker. The developers promptly fixed
this four-year longstanding soundness issue in CVC4. Neither, type-aware
operator nor type-aware expression mutation can find this bug from the
seed φ. Type-aware operator mutation cannot generate this bug since the
number of operators has increased from φ to φmutant.

differences in practice As a key difference to FuzzChick, generative
type-aware mutation can leverage all available operators from the SMT-LIB
specification for the types in its skeleton. In contrast, FuzzChick is limited
to the operators occurring in the seed formula. If the seed formula contains
all operators from the SMT-LIB specification for all the types in its skeleton,
the two techniques are identical, i.e, the grammars L(GGTA) and L(GFC)
would induce the same language. However, in practice, it is rarely the case
that all operators from the specification occur in a formula.

In contrast to type-aware operator mutation, generative type-aware muta-
tion can generate expressions rooted by operators from the SMT specifica-
tion with type-conforming terms from the seed file as its arguments while
type-aware operator mutation can only mutate operators. Hence, generative

https://github.com/cvc5/cvc5/issues/5915

90 generative type-aware mutation

Algorithm 5 TypeFuzz’s pseudocode
1: procedure TypeFuzz(solvers, seeds)

2: all_ops← ReadConfigfile()

3: triggers← []

4: while no termination criterion is met do

5: φ← random.choice(seeds)
6: expressions← GetTypedExpressions(φ)

7: for i to n do

8: φmutant, success ← GenerativeTypeAwareMutate(φ, expressions)
9: if not success then

10: continue

11: if not Validate(φmutant, solvers) then

12: triggers← triggers.append(φmutant)

13: φ← φmutant

type-aware mutation’s additional expressive power translates to practical
advantages over both techniques.

5.3.2 TypeFuzz

Based on Generative Type-Aware Mutation, we have engineered TypeFuzz,
a bug-hunting tool. This subsection details the procedures of TypeFuzz.

main process Algorithm 5 presents the parameterized pseudocode of
TypeFuzz. The main process takes as inputs: a set of SMT solvers, solvers
under test, and a set of seed formulas seeds. First, the algorithm reads a
configuration file (Line 2). The configuration file (see Figure 5.4) contains
all signatures of the SMT-LIB operators and can be customized by the user.
The list triggers is used for collecting the bug triggers and is initialized
to the empty list (Line 3). The body of the while loop is executed until a
termination criterion is met. This could be a timeout or an interruption by
the user. We first randomly chose a formula φ from seeds (Line 5). Then,
we call the function GetTypedExpressions (Line 6) which returns the list
expressions. The body of the for loop (Line 7) realizes n consecutive gen-
erative type-aware mutations. At the end of each iteration (Line 13), we
reset φ to the previously mutated formula φmutant to realize the mutation

5.3 generative type-aware mutation 91

Algorithm 6 Generative Type-Aware Mutation’s pseudocode
1: function GenerativeTypeAwareMutate(φ, expressions)

2: unique_expr← GetUniqueExpressions(expressions)
3: for j to len(expressions) do

4: expr1 ← random.choice(expressions)
5: expr2 ← GetReplacee(expr1, unique_expr)
6: if expr2 ̸= None then

7: return φ[expr2/expr1], true

8: return None, false

9: function GetReplacee(expr, unique_expr)

10: ops← {op ∈ all_ops | rtype(op) = expr.type}
11: op← random.choice(ops)
12: args← []

13: for type in op.arg_types do

14: choices← {e ∈ unique_expr|e ̸= expr∧ e.type = type∧ local_comp(e, expr)}
15: if choices = ∅ then

16: return None

17: arg← random.choice(choices)
18: args.append(arg)

19: return make_expr(op, args)

92 generative type-aware mutation

chain. For parameter n, we have used values in the range of 10 to 100.
Smaller n help traverse the seed set faster, larger n lead to deeper mutations.
Inside the for-loop body, we first call the function GenerativeTypeAware-
Mutate which returns the boolean success indicating whether the function
successfully generated a mutant formula φmutant. If the mutation attempt
was unsuccessful, we continue with the next iteration. Otherwise, we call
the function validate with the mutant formula φmutant and the set of solvers,
solvers. validate sequentially executes each solver on φ and checks for (1)
crashes, i.e., segmentation faults, assertion violations by matching standard
output to a known list of errors, (2) soundness issues by comparing the
satisfiability results of the solvers, and (3) invalid models where the solver
returns an incorrect model on a satisfiable formula. In any of the three
cases, the function returns false and we add φmutant to the candidate bugs.

generative type-aware mutation Algorithm 6 presents the im-
plementation of a generative type-aware mutation. The function Genera-
tiveTypeAwareMutate (Line 1) takes a formula and expressions as its inputs.
We first retrieve the set of unique expressions from the list expressions. The
list of expressions may contain duplicates since syntactically equivalent
expressions can occur multiple times in φ (Line 2). In the for loop (Line
3), we first choose a random expression expr1 from the list of expression
expressions. Then, we call the function GetReplacee to obtain an expression
for replacing expr1. If the function was unsuccessful, it returns None. If
successful, we return a formula in which expr1 is replaced by expr2 and
true(Line 7), indicating that the mutation attempt was successful. Otherwise,
if after len(expressions) tries no replacee has been found, we return None
and false(Line 8) indicating that the mutation attempt was unsuccessful.
The GetReplacee function (Line 9) realizes a greedy algorithm for finding
a suitable replacee expression for a given expression expr. First, we collect a
set of operators of conforming return type with expr (Line 10) and randomly
choose one of them (Line 11). We then iterate through the argument types of
the chosen operator (Line 13). For each argument type, we compute the set
choices (Line 14) representing the type matching expressions e distinct from
expr that are locally compatible with expr. If choices is empty, we return None
(Line 14) to indicate that the mutation attempt was unsuccessful, i.e., there
is no expression e of the same type that is locally compatible with expr and
syntactically different. Otherwise, we randomly choose an argument from
choices and add it to the list of arguments for the chosen operator (Line 17 +

5.4 empirical evaluation 93

18). In Line 19, we then instantiate the chosen operator with the selected
arguments and return them.

computing local compatibility To realize local compatibility (see
Line 14), we use a recursive procedure. For an expression expr, we recur-
sively collect the local variables defined by its parent and upward. The
reason for collecting local variables from the parent onwards is when the
expression declaring the local variable, which itself contains the local vari-
able is substituted by one of its child expressions with the local variable it
declared, the mutant will be faulty as the declaration is lost and the local
variable becomes undefined.

implementation We have implemented TypeFuzz on top of the SMT
solver fuzzer yinyang [101]. For that matter, we implemented the Generative
Type-Aware Mutation as a mutation strategy (260 LoC) and augment the
yinyang framework by a type-checker (790 LoC). TypeFuzz’s mutations can
be customized with a configuration file. We have used the configuration
file from Figure 5.4. Its syntax is similar to the meta-language of SMT-LIB
theory specifications. 2 We hope this will facilitate SMT developers and
practitioners to run customized configurations and have released our tool
on GitHub. 3 The tool can be installed via pip install yinyang.

5.4 empirical evaluation

This section details our extensive evaluation with TypeFuzz demonstrating
the practical effectiveness of Generative Type-Aware Mutation for testing
SMT solvers. Between end of January 2021 and mid September 2021, we
were running TypeFuzz to stress-test the state-of-the-art SMT solvers Z3

and CVC4. During our testing period, we have filed numerous bugs on the
issue trackers of Z3 and CVC4.

result summary

• Many bugs: We found 322 bugs, 229 in Z3 and 93 in CVC4. Among
these, 278 were already fixed.

2 http://smtlib.cs.uiowa.edu/theories.shtml
3 https://github.com/testsmt/yinyang

http://smtlib.cs.uiowa.edu/theories.shtml
https://github.com/testsmt/yinyang

94 generative type-aware mutation

1 ;;; Functions from the core theory
2 (not Bool Bool)
3 (=> Bool Bool Bool :right-assoc)
4 (and Bool Bool Bool :left-assoc)
5 (or Bool Bool Bool :left-assoc)
6 (xor Bool Bool Bool :left-assoc)
7 (par (A) (= A A Bool :chainable))
8 (par (A)
9 (distinct A A Bool :pairwise))

10 (par (A) (ite Bool A A A))
11

12 ;;; Functions from Ints
13 (- Int Int)
14 (- Int Int Int :left-assoc)
15 (+ Int Int Int :left-assoc)
16 (* Int Int Int :left-assoc)
17 (div Int Int Int :left-assoc)
18 (mod Int Int Int)
19 (abs Int Int)
20 (<= Int Int Bool :chainable)
21 (< Int Int Bool :chainable)
22 (>= Int Int Bool :chainable)
23 (> Int Int Bool :chainable)
24

25 ;;; Functions from Reals
26 (- Real Real)
27 (- Real Real Real :left-assoc)
28 (+ Real Real Real :left-assoc)
29 (* Real Real Real :left-assoc)
30 (/ Real Real Real :left-assoc)
31 (<= Real Real Bool :chainable)
32 (< Real Real Bool :chainable)
33 (>= Real Real Bool :chainable)
34 (> Real Real Bool :chainable)
35

36 ;;; Functions from Real_Ints
37 (- Int Int Int :left-assoc)
38 (+ Int Int Int :left-assoc)
39 (* Int Int Int :left-assoc)
40 (div Int Int Int :left-assoc)
41 (mod Int Int Int)
42 (abs Int Int)
43 (<= Int Int Bool :chainable)
44 (< Int Int Bool :chainable)
45 (>= Int Int Bool :chainable)
46 (> Int Int Bool :chainable)
47 (- Real Real)
48 (- Real Real Real :left-assoc)
49 (+ Real Real Real :left-assoc)
50 (* Real Real Real :left-assoc)
51 (/ Real Real Real :left-assoc)

52 (<= Real Real Bool :chainable)
53 (< Real Real Bool :chainable)
54 (>= Real Real Bool :chainable)
55 (> Real Real Bool :chainable)
56 (to_real Int Real)
57 (to_int Real Int)
58 (is_int Real Bool)
59

60 ;;; Functions from Strings
61 ;
62 ; Core string functions
63 (str.++ String String String :left-assoc)
64 (str.len String Int)
65 (str.< String String Bool :chainable)
66

67 ; Regular expression functions
68 (str.to_re String RegLan)
69 (str.in_re String RegLan Bool)
70 (re.none RegLan)
71 (re.all RegLan)
72 (re.allchar RegLan)
73 (re.++ RegLan RegLan RegLan :left-assoc)
74 (re.union RegLan RegLan RegLan :left-assoc)
75 (re.inter RegLan RegLan RegLan :left-assoc)
76 (re.* RegLan RegLan)
77 (re.comp RegLan RegLan)
78 (re.diff RegLan RegLan RegLan :left-assoc)
79 (re.+ RegLan RegLan)
80 (re.opt RegLan RegLan)
81 (re.range String String RegLan)
82

83 ; Misc string functions
84 (str.<= String String Bool :chainable)
85 (str.at String Int String)
86 (str.substr String Int Int String)
87 (str.prefixof String String Bool)
88 (str.suffixof String String Bool)
89 (str.contains String String Bool)
90 (str.indexof String String Int Int)
91 (str.replace String String String String)
92 (str.replace_all String String String String)
93 (str.replace_re String RegLan String String)
94 (str.replace_re_all
95 String RegLan String String)
96

97 ; Maps to and from integers
98 (str.is_digit String Bool)
99 (str.to_code String Int)

100 (str.from_code Int String)
101 (str.to_int String Int)
102 (str.from_int Int String)

Figure 5.4: TypeFuzz’s configuration file. The syntax is purposefully adapted to
the SMT-LIB theory specifications. The configuration is tailored to the
theories Core, Reals, Ints, RealInts and Strings.

5.4 empirical evaluation 95

• Many longstanding soundness bugs in CVC4: We found 20 soundness
bugs alone in CVC4’s default mode. Many of them (7/20) are at least
2 years latent and pre-date any previous fuzzing campaign.

Evaluation Setup

We have run TypeFuzz on a machine equipped with an AMD Ryzen Thread-
ripper 3990X with 64 cores and 32GB RAM. We occupied half of its cores.
Additionally, we ran another machine equipped with an Intel Core i7-8700

CPU with 6 CPU cores of which we used full cores. Both machines were
running Ubuntu 18.04 (64-bit).

test seeds & options As the test seeds, we used non-incremental
formulas from the linear and nonlinear reals and integer arithmetic, their
combinations (LIA, LRA, NIA, NRA, QF_LIA, QF_LIRA, QF_LRA, QF_NIA,
QF_NIRA, QF_NRA) and the string logics QF_S and QF_SLIA. All seeds
were taken from the GitLab repositories provided by the SMT-LIB initiative.4

Since their creation, the following minor modifications were made to these
files: (1) README updates and satisfiability status labels, (2) removal of a
few incorrectly assigned instances to QF_LIA, and (3) several updates in the
QF_S and QF_SLIA seeds changing string operator labels from “-” to under-
score, etc. to ensure compliance with the evolving standard. Therefore, we
can safely assume that previous approaches [1, 2, 32] used the same seeds.
The benchmarks range from verification of systems, proofs, synthesized
programs to symbolic execution runs and randomly generated formulas.
A subset of the formulas is used by the annual SMT solver competition.
We mainly focused our testing efforts on the default modes of the solvers.
We consider CVC4 to be in default mode, if apart from options to support
SMT-LIB seeds such as --produce-models and --strings-exp, no further op-
tions are enabled. For Z3, the option unicode=true was necessary during the
first month of the testing period to guarantee Z3’s compliance with the
specification of the string theory. Apart from the default mode, we focused
on a few popular pre-processing options and rewriter options. These config-
urations are interesting since bugs in them are likely to cause undetectable
soundness issues. We selected the options as per the developer’s priorities.
Furthermore, upon request of Z3’s main developer, we have tested Z3’s
new core (tactic.default_tactic=smt, sat.euf=true), which is supposed to
become Z3’s default mode once stable. For CVC4, we experimented with

4 https://smtlib.cs.uiowa.edu/benchmarks.shtml

https://smtlib.cs.uiowa.edu/benchmarks.shtml

96 generative type-aware mutation

the lazy preprocessing options --no-strings-lazy-pp and --strings-lazy-pp.
For Z3, we used rewriter.cache_all=true, rewriter.pull_cheap_ite=true,
rewriter.eq2ineq=true, rewriter.hoist_mul=true, and rewriter.flat=false.

bug types During testing, we encountered many different kinds of bugs.
We distinguish them by the following categories.

• Soundness bug: Formula φ triggers a soundness bug if solvers S1 and
S2 both do not crash and give different satisfiability results.

• Invalid model bug: Formula φ triggers an invalid model bug if the
model returned by the solver does not satisfy φ.

• Crash bug: Formula φ triggers a crash bug if the solver throws an
assertion violation or a segmentation fault.

TypeFuzz detects soundness bug triggers by comparing the standard outputs
of the solvers. TypeFuzz detects invalid model bug triggers by internal
errors using the model of the SMT solver. Crash bug triggers are detected
whenever a solver returns a non-zero exit code and no timeout occurs.

bug triggers Dozens of sizable bug triggers usually point to the same
underlying bug. Hence, we need to de-duplicate and reduce the bug triggers.
TypeFuzz collects bug triggers that may stem from the same underlying
bug. Hence, we de-duplicated the bug triggers after each fuzzing run with
TypeFuzz to avoid duplicate bug reports on the GitHub issue trackers. Crash
bugs are either assertion violations or segmentation faults. We de-duplicate
assertion violations via the location information (file name and line number)
printed on standard output/error. For soundness and invalid model bugs,
we first categorize the bug triggers by theory. We do this because bug
triggers in different theories are likely to be unique bugs. Then, we select
one bug trigger per theory at a time for reporting. If the bug was fixed,
we check the remaining bug-triggering formulas of the same theory. If
one of them still triggers a bug in the solver, we repeat this process until
none of them triggers a bug anymore. We evaluated 897 bug trigger-seed
pairs found by TypeFuzz. This number is much larger than reported bugs
because a bug can often be triggered many times. The average seed size is
2,023 bytes, the average bug trigger size is 1,776 bytes. Bug triggers are in
most cases not significantly larger than the seeds: 80.7% of the bug triggers
are smaller than the seed, while 19.3% are larger than the seed.

5.4 empirical evaluation 97

Status Z3 CVC4 Total

Reported 229 93 322

Confirmed 204 86 290

Fixed 196 82 278

Duplicate 9 7 16

Won’t fix 14 0 14

(a)

Type Z3 CVC4 Total

Crash 80 39 119

Soundness 66 30 96

Invalid model 58 17 75

(b)

#Options Z3 CVC4 Total

default 71 47 118

1 24 27 51

2 85 11 96

3+ 24 1 25

(c)

Figure 5.5: (a) Status of bugs found in Z3 and CVC4. (b) Types of the confirmed
bugs. (c) # Options supplied to the solvers among the confirmed bugs.

RQ1: How effective is Generative Type-Aware Mutation?

From end of January 2021 to mid September 2021, we have extensively stress-
tested the SMT solvers Z3 and CVC4 with TypeFuzz. From the 322 reported
bugs, 290 were confirmed, 278 were fixed, 16 were categorized as duplicates,
and 14 were won’t fixes (see Figure 5.5a). As for the duplicates in Z3, their
main developer followed a rather aggressive approach by categorizing
every bug as duplicate for which a syntactically similar-looking formula
in an open issue existed. The few won’t fixes were caused by bugs which
the developers confirmed. They were either viewed as not worth fixing or
could not be reproduced. Among the confirmed bug (Figure 5.5b), the most
frequent category are crash bugs (119 out of 290) followed by soundness
bugs (96 out of 290) and invalid model bugs (75 out of 290). Most (118 out
of 290) of the confirmed bugs occurred in the defaults modes of the solvers
and only 51 out of 290 were with one additional option (see Figure 5.5c).
For the confirmed bugs with two options in Z3, 74 out of 96 were related to
the new core of Z3, which is supposed to replace Z3’s default mode, once
stable enough. In fact, Z3’s main developer appreciated our fuzzing efforts.
After dozens of bug fixes for the new core, he wrote:

Thanks for targeting the new code. It is a very good use of the fuzzing
facilities and helps reaching a more solid state for this so-far not
exercised code. All bugs reported in this thread have now been fixed.

We also examined the logic distribution of the confirmed bugs. Most
confirmed bugs in Z3 in the QF_S (40out of 204), followed by the QF_SLIA
(19out of 204) and the QF_NIA (9 out of 204). For CVC4, the top-3 logics
are the same: QF_S logic (39 out of 86) followed by the QF_SLIA (16 out of
86). Strikingly, TypeFuzz found 20 bugs in CVC4’s default mode. Most prior

98 generative type-aware mutation

4
.5

.0
4
.6

.0
4
.7

.1
4
.8

.1
4
.8

.3
4
.8

.4
4
.8

.5
4
.8

.6
4
.8

.7
4
.8

.8
4
.8

.9
4
.8

.1
0

4
.8

.1
1

4
.8

.1
2

tr
un

k

9 11 11 11 10 10 12 13 11
36

8
27

45
14

204

1
.5

1
.6

1
.7

1
.8

tr
un

k

2 4 8
15

86

Figure 5.6: Confirmed bugs that affect releases of Z3 (left) and CVC4 (right).

approaches did not find any bugs in CVC4 [32, 63], YinYang [101] found
eight in nine months and OpFuzz [2] found eleven in a year. All approaches
were reportedly using the SMT-LIB seeds and similar resources as TypeFuzz
did. TypeFuzz found these bugs despite the robustified Z3 and CVC4 and
all the bug fixes caused by prior fuzzing campaigns.

RQ2: How significant are TypeFuzz’s findings?

To understand the significance of our bug findings, we have studied the
influence on historic Z3 and CVC4 releases that supported the tested logics.
For CVC4, we consider all official releases versions from 1.5 (released on
July 10, 2017) and later. For Z3, we consider, versions 4.5.0 (released on
Nov 11, 2016) and later. Figure 5.6 shows the cumulative bug counts in
the different release versions of Z3 and CVC4 respectively. In Z3, TypeFuzz
found 4 bugs in the 4.5.0 release. Among these, two were invalid model bugs
in QF_SLIA and QF_NIA respectively a segmentation fault in Z3’s rewriter
flat configuration and an assertion violation which were consecutively
baked into later release versions. The first soundness bug occurs at version
4.8.8 (released on Apr 9, 2020). Two more occurred at version and nine
more in 4.8.10. For CVC4, one refutational soundness bug in the default
mode affects the 1.5 release, which was also baked in the 1.6 release. Two
additional soundness bugs are affecting CVC4 1.6, both in the default mode.
This makes 3 confirmed bugs affecting the 1.6 release.

RQ3: Are Generative Type-Aware Mutation and operator mutations orthogonal?

To answer this research question, we have run an experiment to measure
the code coverage of TypeFuzz compared to its seeds, the state-of-the-art

5.4 empirical evaluation 99

Z3 CVC4

lines functions branches lines functions branches

Seeds 17.2% 16.5% 10.6% 21.5% 39.7% 8.0%

OpFuzz 17.8% 16.8% 11.1% 22.3% 40.9% 8.4%

TypeFuzz 19.4% 18.7% 11.9% 22.2% 40.7% 8.3%

TypeFuzz + OpFuzz 19.7% 18.8% 12.2% 22.7% 40.9% 8.5%

Figure 5.7: Line, function, and branch coverage achieved by the baseline seeds,
OpFuzz, TypeFuzz and the combination of OpFuzz and TypeFuzz.

fuzzer for SMT solvers OpFuzz. We have sampled 100 files from all test
seeds and then ran the following four configurations: A run on each seed
from the chosen set with Z3 and CVC4 (Seeds), the state-of-the-art fuzzer
OpFuzz, our tool TypeFuzz, and the sequential combination of OpFuzz and
TypeFuzz, all with the initial set of seeds. The number of mutating iterations
for each seed is 10 and the timeout for each solving query is 8 seconds. For
all coverage measurements we used gcov 5 from the GCC suite.

Figure 5.7 shows the cumulative coverage data. We first observe that both
OpFuzz and TypeFuzz cover strictly more code than the seed set on Z3 and
CVC4 respectively. From the first three rows Seeds, OpFuzz, and TypeFuzz,
we deduce that both OpFuzz and TypeFuzz can cover additional code as
compared to the seeds. For OpFuzz, this increase is rather low (+0.6%
LoC in Z3 and +0.8% LoC in CVC4) confirming previous experiments.
For TypeFuzz, the increase is significantly higher in Z3 (+2.2% LoC) and
slightly lower in CVC4 (+0.7% LoC). Looking again at the first three rows,
we can also deduce that TypeFuzz covers code that OpFuzz does not, since
TypeFuzz’s percentage is higher than OpFuzz’s (17.8% vs 19.4%). From the
third and fourth rows, we deduce that OpFuzz also covers different code
regions than Typefuzz since there is an increase in code coverage, i.e., 19.7%
for TypeFuzz + OpFuzz versus 19.4% for TypeFuzz alone. This indicates that
OpFuzz and TypeFuzz are complementary in terms of code coverage.

5 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

100 generative type-aware mutation

5.5 selected bug samples

This section details multiple bug samples from our extensive bug-hunting
campaign of the SMT solvers Z3 and CVC4 and inspects their root causes.
The reports shown are reduced bug triggers after bug reduction.

figure 5 .8a shows a solution soundness bug in CVC4. The bug has
existed since CVC4 1.7 was released on Apr 9, 2019 and pre-dates any
fuzzing campaign. The bug is due to an inadmissible rewrite and not
detected by the model validator.

311 // (= "" (str.replace x "A" "")) ---> (str.prefix x "A")
312 - if (StringsEntail::checkLengthOne(ne[1]) && ne[2] == empty)
313 + if (StringsEntail::checkLengthOne(ne[1], true) & ne[2] == empty)
314 {
315 Node ret = nm->mkNode(STRING_PREFIX, ne[0], ne[1]);
316 return returnRewrite(node, ret, Rewrite::STR_EMP_REPL_EMP);
317 }

src/theory/strings/sequences_rewriter.cpp (132504c)

Method bool checkLengthOne(Node s, bool strict=false) checks whether a
string expression s has length one. The comparison is exact if strict=true
and otherwise requires s to have at most length one. The precondition for
the rewrite in the above listing is to check if str.replace’s second argument
of length one. The developer fixed the bug by enforcing the strict case.

figure 5 .8b shows a refutational soundness bug in Z3’s QF_SLIA logic.
The bug was caused by an incorrect sequence axiom. 6 The bug trigger has
one assert with a negated binary equation. This format has inspired Z3’s
main developer to add the following rewrite along with the bugfix:

1581 indexof("", b, r) -> if b = "" and r = 0 then 0 else -1
1582 + indexof(a, "", x) -> if 0 <= x <= len(a) then x else - 1
1583 indexof(unit(x)+a, b, r+1) -> indexof(a, b, r)

src/ast/rewriter/seq_rewriter.cpp (e83f319)

Accordingly, Z3 will rewrite indexof(a, "", x) to x if index x is in the range
of the string and to constant -1 otherwise.

figure 5 .8c shows an invalid model in Z3’s QF_SLIA logic. The formula
is satisfiable but Z3 returns an invalid model on it. The bug was fixed by
overhauls in the sequential rewriter of Z3.

6 Related source file: src/ast/rewriter/seq_axioms.cpp

https://github.com/cvc5/cvc5/commit/132504c9f255fdb2c31b9a43bb3b9513db41afc1
https://github.com/Z3Prover/z3/commit/e83f31949e164d36a3e875003855bca8b7f7d8c6

5.5 selected bug samples 101

1 (declare-fun x () String)
2 (declare-fun y () String)
3 (assert (str.< x (str.replace ""
4 (str.++ (str.replace "B" x "")
5 (str.replace "B"
6 (str.replace "B" x "") "")) y)))
7 (check-sat)

(a) Long-latent solution soundness bug in
CVC4 undetected by model validator.
https://github.com/CVC4/CVC4/issues/6075

1 (declare-fun x () String)
2 (declare-fun y () String)
3 (declare-fun z () Int)
4 (assert (not (= (str.substr "B" z
5 (str.indexof x "" (str.len x)))
6 (str.substr "B" z (str.len x)))))
7 (check-sat)

(b) Refutation soundness bug in Z3’s
QF_SLIA logic.
https://github.com/Z3Prover/z3/issues/5074

1 (declare-fun a () Bool)
2 (declare-fun b () Int)
3 (declare-fun c () String)
4 (declare-fun d () String)
5 (assert (= c (str.++ (str.replace d
6 (str.substr (ite a c d) 0 b) c) d)))
7 (check-sat)

(c) Invalid model bug in Z3’s QF_SLIA.
https://github.com/Z3Prover/z3/issues/5140

1 (declare-fun a () Int)
2 (declare-fun b () Int)
3 (declare-fun c () Int)
4 (assert (and (= 0 (- (div 0 0) a))
5 (= 0 (+ b 1 b (* c
6 (mod (* a (- 1)) 0))))))
7 (check-sat)

(d) Invalid model bug in Z3’s QF_NIA.
https://github.com/Z3Prover/z3/issues/5136

1 (declare-fun a () Real)
2 (declare-fun b () Real)
3 (assert (= b (+ 1 (* a a
4 (+ 1 (/ b b))))))
5 (check-sat)

(e) Crash bug in CVC4 in QF_NRA.
https://github.com/CVC4/CVC4/issues/6228

1 (declare-fun a () String)
2 (assert (str.< a "ar"))
3 (assert (str.prefixof "ar"
4 (str.replace a "ar" "")))
5 (check-sat)

(f) Z3 refutation soundness bug in QF_SLIA.
https://github.com/Z3Prover/z3/issues/5117

1 (declare-fun a () Int)
2 (declare-fun b () Int)
3 (declare-fun c () Int)
4 (declare-fun d () Int)
5 (declare-fun e () Int)
6 (assert (and (>= b 0) (<= b 3)
7 (>= c 2 d) (= c (* 2 a) d)
8 (= (- (- e c d)) 0) (= e 1)))
9 (check-sat)

(g) Segmentation fault in Z3 QF_LIA.
https://github.com/Z3Prover/z3/issues/5035

1 (declare-fun x () String)
2 (declare-fun y () String)
3 (assert (= (str.replace
4 (str.replace x "B" (str.++
5 "B" "B")) "B" (str.++ y "B"))
6 (str.++ y "B")))
7 (check-sat)

(h) Soundness bug in CVC4’s QF_S logic.
https://github.com/CVC4/CVC4/issues/5915

Figure 5.8: Selected bug samples in Z3 and CVC4.

https://github.com/CVC4/CVC4/issues/6075
https://github.com/Z3Prover/z3/issues/5074
https://github.com/Z3Prover/z3/issues/5140#issuecomment-812853991
https://github.com/Z3Prover/z3/issues/5136
https://github.com/CVC4/CVC4/issues/6228
https://github.com/Z3Prover/z3/issues/5117
https://github.com/Z3Prover/z3/issues/5035
https://github.com/CVC4/CVC4/issues/5915

102 generative type-aware mutation

figure 5 .8d depicts an invalid model bug in Z3’s QF_NIA logic. The
formula is satisfiable but Z3 reports an invalid model on it. The issue
was that Z3 did not match the integer division by zero (div 0 0) as an
uninterpreted constant as mandated by the SMT-LIB standard. Z3’s main
developer fixed this regression by adding a matching case for integer
division and for modulo, remainder, and division.
348 + MATCH_BINARY(is_mod0);
349 + MATCH_BINARY(is_rem0);
350 + MATCH_BINARY(is_div0);
351 + MATCH_BINARY(is_idiv0);

src/ast/arith_decl_plugin.h (c71bbb6)

figure 5 .8e presents a crash bug in CVC4 triggered by a QF_NRA for-
mula. The pull request in response to this bug got a major label. According
to a CVC4 developer, CVC4 was incorrectly trying to repair a model when
one is not guaranteed to exist, leading to a spurious assertion failure.

figure 5 .8f shows a refutational soundness bug in z3’s string logic
qf_slia. the formula is satisfiable, but z3 returns unsat on it. a model is
realized by a = "aarr". The first assert is satisfied since "aarr" is lexico-
graphically smaller than "ar". The second assert is also satisfied by this
model: if we replace the "ar" within "aarr" by the empty string, we obtain
"ar" which is a prefix of itself. the root cause for this bug was an incorrect
rewrite rule for the case when the third argument str.replace is empty; in
z3’s sequential rewriter. z3’s main developer fixed this bug by removing
the faulty rewrite rule and replacing it with a correct one.

figure 5 .8g depicts a segfault in Z3’s rewriter.flat=false configuration.
The segfault is caused by an issue with inconsistent assignments in the
lia2pb tactic (src/tactic/arith/lia2pb_tactic.cpp) This issue is longstand-
ing: it existed since Z3 4.5.0 which was released on Nov 8, 2016.

figure 5 .8h depicts a refutational soundness bug in CVC4’s string logic.
Similar to the bug in Figure 5.8f, the bug occurs in the sequences rewriter.
The logic of the rewrite rule is detailed in the following code snippet:

2204 // (str.contains (str.replace x y z) w) --->
2205 // (str.contains (str.replace x y "") w)
2206 // if (str.contains z w) ---> false and (str.len w) = 1
2207 if (StringsEntail::checkLengthOne(node[1]))
2208 {
2209 - Node ctn = d_stringsEntail.checkContains(node[1], node[0][2]);

https://github.com/Z3Prover/z3/commit/c71bbb6391e7cfbba704a63350513dc0977ea922

5.6 limitations & data-driven type-aware mutation 103

2210 + Node ctn = d_stringsEntail.checkContains(node[0][2], node[1]);

src/theory/strings/sequences_rewriter.cpp (48047e8)

The method bool checkContains(Node z, Node w) decides for two string nodes
whether z is contained in w. node[0][2] corresponds to z (third child of the
str.replace expression) and node[1] to w. The bug occurred since two argu-
ments were reversed which led to an incorrect precondition for the rewrite
rule. This bug was fixed and added to the regressions.

5.6 limitations & data-driven type-aware mutation

Generative Type-Aware Mutation has been demonstrated to be effective for
SMT solver testing. Naturally, it also comes with some limitations. First,
Generative Type-Aware Mutation cannot add new assertions to the seed
formula. Second, it cannot mutate unseen constants. For example, if a bug
would be triggered by a term (= (str.len x) 5) and all but the constant "5"
would occur in the seed formula, Generative Type-Aware Mutation could
not generate the term and may miss the bug. Both type-aware operator
mutation and FuzzChick share these limitations.

To overcome the second limitation, we experimented with another ap-
proach called Data-driven Type-Aware Mutation. For this technique, we use a
database to store a large number of expressions along with their types in a
pre-processing step. Given a seed formula φ, we then do the following:

1. Choose a random expression expr1 in φ.
2. Choose a random operator op from the SMT-LIB specification of return

type type(expr1)

3. Build an expression expr2 rooted by op using random terms from the
database based on op’s signature

4. Substitute expr1 with expr2 in φ

Using this approach, we found reported another 40 bugs, out of which
29 were confirmed, and 29 were fixed.

5.7 related work

We first discuss related work SMT solver robustness and performance
testing. Then, as Generative Type-Aware Mutation is a hybrid between
mutation-based and grammar-based fuzzing, we discuss related approaches
to mutation-based and grammar-based fuzzing.

https://github.com/nafur/cvc5/commit/48047e893f58cade3b4a45388600c42eb656a13c

104 generative type-aware mutation

smt solver robustness and performance testing Our approach
is particularly related to the prior works on SMT solver testing. The first
approach on testing SMT solvers was the fuzzing tool FuzzSMT [60] which
is based on differential testing and targets bit-vector logic. Unlike Generative
Type-Aware Mutation, FuzzSMT was entirely based on grammar-based
fuzzing without a mutational component. FuzzSMT totally found 16 solver
defects in five older solvers, however, none in Z3. BtorMBT [61] is a testing
tool for Boolector [62], an SMT solver for the bit-vector theory. BtorMBT
tests Boolector by generating random, valid API call sequences. Thanks to
the SMT-LIB initiative [47], SMT theories have been formalized and common
input/output file formats have been devised. In addition, the yearly solver
competition SMT-COMP heavily penalizes solvers with soundness issues.
As a result, the SMT solvers Z3 and CVC4 have robustified and were
believed to be quasi-stable. In fact, until October 2019 there were less than
50 potential soundness issues reported during eight years of development
and around 150 in Z3 in 3 years [2].

Researchers have hence targeted the less mature logics such as the recently
proposed theory of strings. Blotsky et al. [56] proposed StringFuzz which
focuses on performance issues in string logic. StringFuzz generates test
cases in two ways, one is mutating and transforming the benchmarks,
another one is randomly generating formulas from a grammar. StringFuzz
found 2 performance bugs and 1 implementation bug in z3str3. Bugariu and
Müller [63] proposed a formula synthesizer for String formulas that are by
construction satisfiable or unsatisfiable. They showed that their approach
can detect many existing bugs in String solvers and they found 5 new
soundness/incorrect model bugs in z3 and z3str3. However, it remained
an open question whether automated testing tools could find bugs in
theories except for the unicode string theory in Z3 and CVC4. Semantic
fusion [1] is an approach to stress-test SMT solvers by fusing formula pairs
that are by construction either satisfiable or unsatisfiable. Winterer, Zhang,
and Su’s tool YinYang found 39 bugs in Z3 and 9 in CVC4. STORM [32],
another recent mutation-based SMT solver testing approach, found 27 bugs
in Z3, however none in CVC4. Later, type-aware operator mutation [2]
has found several hundreds of bugs in the SMT solvers Z3 and CVC4.
However, recently, previous approaches have experienced the saturation
effect. Generative Type-Aware Mutation has overcome the shortcomings
of previous approaches by combining mutation-based and grammar-based
fuzzing.TypeFuzz is a highly practical tool that SMT solver developers can
use to stress-test new features conveniently.

5.7 related work 105

mutation-based fuzzing Mutation-based testing fuzzing techniques
leverage user-provided test seeds and generate new mutated inputs to
uncover bugs in programs. The two closest works from the family of
mutation-based testing techniques are skeletal program enumeration (SPE)
for testing C compilers [82], and FuzzChick [83] an approach to test Coq
programs. Similar to Generative Type-Aware Mutation, SPE also performs
random type-aware mutations. However, in contrast to Generative Type-
Aware Mutation, SPE is limited to variables and is not generative. FuzzChick
generates test cases by type-aware mutation. FuzzChick stores parameter
types and generates new values for the parameters while preserving type
correctness. However, unlike Generative Type-Aware Mutation, FuzzChick
uses coverage feedback to guide its mutations (grey-box fuzzing) while
Generative Type-Aware Mutation is a black-box fuzzing technique. Grey-
box fuzzing enhances black-box fuzzing by coverage information. The
most prominent tool for binary grey-box fuzzing is AFL [85]. Given a set
of test seeds, AFL performs mutations at the binary level, such as bit-
shifts, etc. However, binary-level fuzzing is ineffective on programs with
highly structured inputs (e.g. PDF viewers, programming language engines,
etc.) because of the many syntactically invalid inputs being generated.
Thus, towards structured test inputs, grammar-aware grey-box fuzzers were
proposed. To generate valid test inputs, grammar-aware grey-box fuzzers
were proposed. AFLSmart [88], Superion [89] and Nautilus [90] are general
grammar-aware grey-box fuzzers targeting programming language engines.
They use code coverage to guide the grammar-aware mutations.

generative fuzzing Generative fuzzers [102] synthesize test inputs
from scratch using a language grammar or a (language) model. Csmith [91]
generates random C programs through repeated applications of rules from
the C grammar. Similar to Generative Type-Aware Mutation, Csmith re-
lies on differential testing to cross-check the generated seeds. Csmith has
found 300+ bugs in the compilers GCC and LLVM. A recent follow-up
work to Csmith is YarpGen [103] which additionally prevents generating
C programs with undefined behavior. Another recent generative fuzzing
approach is pivot query synthesis (PQS) [104] It synthesizes specific SQL
queries on random databases. Unlike Csmith and YarpGen, PQS is a meta-
morphic testing approach. Moreover, researchers have adapted generative
language models [105] to generate and guide input generation. Different
from all other approaches, Generative Type-Aware Mutation does not gen-
erate from scratch but generates through the substitution of expressions.

6
JANUS : F I N D I N G I N C O M P L E T E N E S S B U G S V I A
W E A K E N I N G A N D S T R E N G T H E N I N G

This chapter focuses on incompleteness bugs in SMT solvers. We first
formally define incompleteness bugs. Then, we propose Weakening and
Strengthening, an approach for fabricating an implication chain of formulas.
Next, we present Janus, its realization, and show that it is capable of finding
31 incompleteness bugs in Z3 and cvc5, out of which 26 were confirmed,
and 20 were fixed. Finally, we discuss Janus’s incompleteness bug findings
revealing functional, regression, and performance issues in the solvers—
several of which triggered in-depth discussions among the developers.

6.1 motivation

An SMT solver returns unknown if it cannot cannot determine the satisfia-
bility of a formula. Incompleteness bugs, i.e. unexpected unknown-results,
impact the performance of SMT solvers’ client applications frustrating their
developers—especially since SMT solvers are usually at the very core of
their client software solving NP-hard problems. Formula φ may realize a
path constraint in a symbolic execution engine (e.g. KLEE [9], Microsoft’s
SAGE [52]), an access policy of a web service (e.g. AWS’s Zelkova [16]), or
a model of a safety-critical system (e.g. AdaCores’s Spark [17]). Potential
consequences of incompleteness bugs include missed bugs in the software
under test, slow (or even non-terminating) verification of safety-critical
or security-critical properties and other undesirable effects. The following
trace shows an incompleteness bug in Z3:

$ z3 bug.smt2

unknown

$ cat bug.smt2

(declare-const x Int)

(assert (forall ((v Int)) (= v (* x x))))

(check-sat)

107

108 weakening and strengthening/janus

The formula asserts that every integer can be represented as the square
of some other integer. The first statement of the script declares an integer
variable, the second specifies a constraint, and the third queries the SMT
solver. Since we cannot choose an admissible value for x to satisfy the
constraint (as there is no square number equal to all integers), the formula
is unsatisfiable, and Z3 should return unsat. If the formula was a proof or
a path condition such behavior may lead to verification failure. Why does
Z3 fail at solving such a simple formula? As it turns out, it is caused by a
bug in the implementation of model-based quantifier instantiation (MBQI).
MBQI guesses values for the universal quantifiers (v in our case) to check
whether the formula is unsatisfiable. On inspecting the issue deeper, we
noticed that even if we run MBQI a million iterations, Z3 could not decide
the formula. 1 However, fixing a random integer v which is not a square
number would have been enough to determine the unsatisfiability of the
formula. We reported this bug to the issue tracker of Z3 on GitHub. Z3’s
main developer promptly fixed it.

Not every unknown-result indicates a bug. As SMT solvers support un-
decidable logics, they are necessarily incomplete. An SMT solver returns
unknown on a formula if it has no decision procedure to solve the formula or
to avoid a timeout. In practice, SMT solver can solve most problem instances
from undecidable logics relevant to users. Similar to decidable logics, SMT
solver developers enhance their solvers by rewriter rules, pre-processors
etc. However, distinguishing expected from unexpected incompletenesses is
difficult and confuses users:

"I’m seeing a regression [...], where a lot of simple formulas that used
to be unsat now give unknown."

https://github.com/Z3Prover/z3/issues/5516

"The following code will produce unsat in z3 version 4.8.10.0 but is
unknown in later versions."

https://github.com/Z3Prover/z3/issues/5438

"This is pretty unexpected since the query is small and does not
contain features where we would expect to see performance regressions
when updating releases."

https://github.com/Z3Prover/z3/issues/4702

1 z3 smt.mbqi.max_iterations=1000000 bug.smt2

https://github.com/Z3Prover/z3/issues/5516
https://github.com/Z3Prover/z3/issues/5438
https://github.com/Z3Prover/z3/issues/4702

6.2 problem statement 109

U
Funkn

Fibug

Fibug

Fregr Fimp

Figure 6.1: Classification of incompleteness bugs: Formulas Fregr and Fimp are the
targets for incompleteness testing.

The first comment is from a developer of LLVM static analyzer Alive2 [106],
the second from Haskell verifier SBV [107], and the third issue is a query
of software verifier SMACK [108]. Incompleteness bugs are not only a Z3

issue. On CVC5’s issue tracker, users report similar experiences. 2 SMT
solver developers address such issues by ad-hoc fixes, pointing to the logic’s
undecidability and suggesting workarounds. Such hacks can lead to bugs
masked as unknowns. This might lead to incorrect conclusions, suggesting
that the solver returns unknown because the problem is undecidable.

6.2 problem statement

We consider the problem of finding incompleteness bugs Fibug in an SMT
solver, i.e., unexpected incompletenesses among the set of inputs Funkn on
which the SMT solver returns unknown. We approximate Fibug as follows.

Definition 6.2.1 (Incompleteness bugs in SMT solvers). We distinguish the
following two types of incompletenesses bugs:

1. Regression incompleteness:
Sold(φ) = sat/unsat and S(φ) = unknown

2. Implication incompleteness:
S(φ) = sat and S(φ′) = unknown if φ implies φ′

S(φ) = unsat and S(φ′) = unknown if φ′ implies φ

where S is an SMT solver, Sold is an earlier version of S, φ is an SMT formula
and φ′ is a mutated formula based on φ.

Figure 6.1 classifies incompleteness bugs: On the left, we see the "Uni-
verse" U of all SMT formulas handled by the solver. The set U contains

2 https://github.com/cvc5/cvc5/issues/6274

https://github.com/cvc5/cvc5/issues/6274

110 weakening and strengthening/janus

$ z3 5338.smt2
unknown

$ z3-4.8.10 5338.smt2
unsat

$ cat 5338.smt2
(assert (forall ((v Int)) (= 0 v)))
(assert (= 0 (mod 0 0)))
(check-sat)

(a)

$ cvc5 -q 7009-mut.smt2 $ cvc5 -q 7009.smt2
sat unknown

$ cat 7009-mut.smt2 $ cat 7009.smt2
(declare-fun s () Real) (declare-fun s () Real)
(declare-fun k () Real) (declare-fun k () Real)
(assert (= (* s k) 1)) (assert (>= (* s k) 1))
(check-sat) (check-sat)

(b)

Figure 6.2: (a) Regression incompleteness: legacy Z3 4.8.10 solves this formula,
while the trunk returned unknown (Z3#5338). (b) Implication incom-
pleteness in cvc5 caused by minor operator change (cvc5#7009).

formulas for which the SMT solver returns unknown (Funkn) which in turn
contains the set of incompleteness bugs (Fibug). On the right, we have Fibug
which contains regression incompletenesses Fregr and implication incom-
pletenesses Fimp. Regression incompletenesses are caused by (recent) code
changes leading to an incompleteness on previously solved formulas. Typ-
ically such bugs affect client software that works correctly with an older
version of the SMT solver but fails after updating the solver.

As an example, consider Figure 6.2a where Z3’s trunk version does not
solve a simple formula and returns unknown however legacy version Z3

4.8.10 determines the formula to be unsat. We reported this issue on the
issue tracker of Z3. It was fixed within a week by the Z3 developers.

Implication incompletenesses occur when an SMT solver solves a given
input formula φ but minor changes in the formula (i.e. the mutation to φ′)
cause the solver to report unknown. Such formula pairs can suggest possible
improvements for SMT solvers, e.g., to formula rewriters, pre-processors,
theory solvers etc. If φ was generated by a client application of an SMT
solver, fixing implication incompletenesses makes the client application
more robust. For an example of an implication incompleteness, consider
Figure 6.2b where the operator change = to >= caused cvc5 to be incomplete.
Both bugs are real cases found by our approach Janus and fixed by the SMT
solver developers of Z3 and cvc5.

https://github.com/Z3Prover/z3/issues/5338
https://github.com/cvc5/cvc5/issues/7009

6.2 problem statement 111

1 2 . . . n− 1 n
(declare-const x Int)

(declare-const x9 Bool)

(declare-const x8 Bool)

(assert (and x8 x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

(declare-const x Int)

(declare-const x9 Bool)

(assert (and x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

. . .

(declare-const x Int)

(declare-const x9 Bool)

(assert (or x9 (=

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

(declare-const x Int)

(declare-const x9 Bool)

(assert (or x9 (str.prefixof

(str.from_int x)

(str.from_int (- x)))))

(check-sat)

∧

∧

x8 x9

=

E1 E2

∧

x9 =

E1 E2 . . .

∨

x9 =

E1 E2

∨

x9 str.prefixof

E1 E2

z3-4.8.10 sat sat . . . sat sat

z3-trunk sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Figure 6.3: Finding regression incompleteness with Janus: sample mutation chain
leading to a regression incompleteness in Z3 (Z3#5381).

1 2 . . . n− 1 n
(declare-const s Real)

(declare-const k Real)

(assert (and (= s k)

(= (* s k) 1)))

(check-sat)

(declare-const s Real)

(declare-const k Real)

(assert (and (= (* s k) 1)))

(check-sat)

. . .
(declare-const k Real)

(declare-const s Real)

(assert (= (* s k) 1))

(check-sat)

(declare-const k Real)

(declare-const s Real)

(assert (>= (* s k) 1))

(check-sat)

∧

=

· 1

s k

=

s k

∧

=

· 1

s k . . .

=

· 1

s k

≥

· 1

s k

cvc5 sat sat . . . sat unknown

✓ ✓ . . . ✓ ✗

Figure 6.4: Finding an implication incompleteness with Janus: sample mutation
chain leading to an implication incompleteness in cvc5 (cvc5#10891).

https://github.com/Z3Prover/z3/issues/5381
https://github.com/cvc5/cvc5/issues/10891

112 weakening and strengthening/janus

6.3 the janus framework for finding incompleteness bugs

This section presents Janus, our approach to tackle regression and impli-
cation incompletenesses. We present (1) an approach overview, (2) present
the necessary background, and (3) Weakening and Strengthening, the core
technique of the Janus framework.

6.3.1 Approach Overview

Janus has two concurrent modes, one for finding regression incomplete-
nesses, and another one for finding implication incompletenesses. We will
describe them in two separate examples.

finding regression incompletenesses Figure 6.3 shows a mu-
tation chain of Janus for finding regression incompletenesses (from left
to right). Janus starts with a seed formula on which both Z3 and legacy
z3-4.8.10 return sat (step 1). Janus then chooses a random rule from its rule
set and applies it to the seed (step 2). The process continues up to the
point where Z3 returns unknown and z3-4.8.10 returns sat. Janus detected
a regression incompleteness. This is real case, i.e. an actual bug that we
reported to the issue tracker of Z3.

finding implication incompletenesses Figure 6.4 shows a mu-
tation chain of Janus for finding regression incompletenesses (from left
to right). Janus starts with a satisfiable seed formula (step 1). Janus then
chose a satisfiability-preserving transformation rule, e.g., dropping the first
conjunct of the and expression. As the oracle is sat, we weaken, if the oracle
was unsat, we would strengthen. This results in a mutated formula (step 2)
satisfiable by construction. Janus generates mutants this way until the solver
returns unknown. SMT solver developers can investigate the unknown case
together with the rule (c.f. step n− 1 to n) that led to the unknown-result to
understand why the SMT solver has failed. This is a real case, i.e. an actual
bug that we reported to the issue tracker of cvc5.

6.3.2 Weakening & Strengthening

This section presents Weakening and Strengthening, our approach to tackle
regression and implication incompletenesses in SMT solvers. We first define
the notion of weaker/stronger for formulas and introduce parity.

6.3 the janus framework for finding incompleteness bugs 113

definitions We use standard notions of typed higher-order logic, such
as term, quantifier, function, etc., and write expressions for term occurrences.
The set of free variables in a formula φ is denoted as FV(φ). We define
a subformula to be a predicate represented by a subtree of the abstract
syntax tree of φ. Departing from standard notation, we distinguish between
multiple occurrences of syntactically equal parts within a formula, i.e.,
φ[F 7→ G] is the formula represented by an abstract syntax tree of an
SMT program where F is replaced by G in exactly one place. We write the
universal and existential quantification of a term t over a variable x with
sort T as (forall ((x T)) t).

Definition 6.3.1 (Weaker/stronger). Let φ1, φ2 be formulas with the same
free variables i.e., FV(φ1) = FV(φ2) = {x1, · · · , xn}. We call φ1 weaker than
φ2 if ∀x1, . . . , xn : φ2 → φ1. Conversely, we call φ2 stronger than φ1.

Definition 6.3.2 (Parity). For a formula φ with a subformula F, we define
parity(F, φ) as

parity(F, φ) :=

1 if F represents φ

−1 · parity(F, φ′) if φ = ¬φ′

parity(F, φ1) if φ = φ1 ∧ φ2 and F in φ1

parity(F, φ2) if φ = φ1 ∧ φ2 and F in φ2

parity(F, φ′) if φ = ∃x : φ′

If parity(F, φ) = 1, then F is called positive and negative otherwise.

Parity links local weakening and strengthening of a subformula to global
weakening and strengthening of the overall formula. More precisely, the
parity of a subformula captures whether weakening or strengthening has
the same or the opposite effect on the surrounding formula.

Lemma 6.3.1. Let φ be a formula with a subformula F. For any G weaker than F,
we have:

if F positive in φ then ∀x1, . . . , xn : φ→ φ[F 7→ G]

if F negative in φ then ∀x1, . . . , xn : φ[F 7→ G]→ φ

with the set of free variables FV(φ) = x1, . . . , xn.

For the proof of Lemma 6.3.1, we refer the reader to the Appendix A.3.
Given Lemma 6.3.1, we can derive four weakening/strengthening rules.

114 weakening and strengthening/janus

Theorem 6.3.1. Let F, Fw, Fs be formulas and φ a sentence such that F is a
subformula of φ, Fw is weaker than F and Fs is stronger than F. Then the following
statements hold:

1. If F is positive and φ satisfiable, then φ[F 7→ Fw] is satisfiable

2. If F is negative and φ satisfiable, then φ[F 7→ Fs] is satisfiable

3. If F is negative and φ unsatisfiable, then φ[F 7→ Fw] is unsatisfiable

4. If F is positive and φ unsatisfiable, then φ[F 7→ Fs] is unsatisfiable

Proof. Cases (1) - (4) are direct corollaries of Lemma 6.3.1.

mutation rules A rule consists of two patterns, the left and right-hand
side of an implication or equivalence. Many of the rules are parametrized
over additional terms, e.g. t1 = t2 of Reals is equivalent to t1 + c = t2 + c
for any term c of sort Real. We instantiate such parameters in a two-stage
process: (1) search the current SMT-file for terms of the required sort. If
there are any, choose one randomly. Otherwise, (2) choose randomly from
a set of literals. Rules can be implemented from left to right, right to left
or both but we will omit this detail and present them only on the logical
level. Our implemented rule set is shown in Table 6.1. Multiple rules are
equivalences, e.g., the rule for "or", and implication "→". We include such
rules as they diversify the set of generated mutants. They can help trigger
other rules to become applicable. Janus applies "equivalence rules" in both
directions to avoid getting stuck.

intuition behind weakening and strengthening Weakening
and Strengthening’s key goal is verifying the robustness of SMT solvers
concerning their completeness. Users expect small changes on a decidable
formula φ to yield a decidable mutated formula φ′. If an SMT solver returns
unknown on φ′, it can indicate either an incompleteness bug or an expected
incompleteness. Weakening a satisfiable formula (φ to a formula φ′) relaxes
φ’s constraints. Hence, φ′ admits more solutions than φ. Solving φ′ is
expected to be easier than solving φ. Strengthening an unsatisfiable formula
(φ to a formula φ′) tightens φ’s constraints making it even more obvious
to the SMT solver that φ′ should be unsatisfiable. We view SMT solvers as
black-boxes without any assumptions about the decision procedures used
for a given formula. There is also no guarantee for the mutated formulas φ′

to be easier to solve than φ. However, this holds on average, as the following
experiment shows. We sampled 1,000 nonlinear benchmarks (500 satisfiable,

6.3 the janus framework for finding incompleteness bugs 115

Type Strong Weak Legend

Real/Int n1, n2 ∈ R or n1, n2 ∈N

n1 = n2 n1 ≥ n2 | n1 ≤ n2

n1 > n2 n1 ≥ n2 | n1 ̸= n2

n1 < n2 n1 ≤ n2 | n1 ̸= n2

n1 ⊙ n2 (n1 + c)⊙ (n2 + c) | n1 ⊙ (n2 + c) | n1 ⊙ (n2 + c) c ∈N or c ∈ R

⊙ ∈ {=,>,<,≤,≥}

Bool φ, φ1, φ2 boolean formulas

φ1 ∧ φ2 φ1 ∨ φ2 | φ1

φ1 ⊕ φ2 φ1 ∨ φ2 ⊕ is the logical xor

∀x : φ | φ[x 7→ B] ∃x : φ B expression of type of x

x1 = . . . = xn f (x1) = . . . = f (x2) x1, · · · , xn are terms

φ1 ∨ φ2 ∃b : ite(b, φ1, φ2) ite is if-than-else
b is a boolean variable

ite(B, φ1, φ2) B→ φ1 | ¬B→ φ2

φ1 → φ2 ite(φ1, φ2,⊤) | ite(¬φ1,⊤, φ2) | ∀b : (φ1 ∧ b →
φ2 ∧ b)

φ1 ∨ φ2 ¬φ1 → φ2

∀x.φ φ[x 7→ B]

φ1 φ1 ∨ φ2

String s1, s2, s3 are strings

s1 = s2 s1 ̸= (s1 ++ s3) | s1 ≤s s2 | prefixof (s1, s2) ∧
suffixof (s1, s2) | prefixof (s1, s2) ∧ prefixof (s2, s1) |
contains(s1, s2) | suffixof (s1, s2) ∧ suffixof (s2, s1) |
prefixof (s1, s2) | suffixof (s1, s2)

++: string concatenation

s1 <s s2 s1 ̸= s2 | s1 ≤s s2 ≤s : lexicographical ordering

s1 ≤s s2 substr(s1, 0, ite(0 ≤ i ≤ len(s1)− 1, i, len(s1))) ≤s
s2 | s1 ≤s (s2 ++ s3)

contains(s1, s2) len(s1) ≥ len(s2)

Regex r, r1, · · · , rn regexes, n ∈N

r r+ +: Kleene plus

r loop(1, n, r) loop(i, n, r) =
⋃

i L(r)i

r opt(r) opt(r) := union(r, (str.to_re ""))

r1 ++r . . . ++rrn union(r1, . . . , rn)n ++r : regex concat

r ∀x : union(r, s) for an arbitrary string s

r+ r∗ ∗: Kleene star

range(s1, s2) range(s3, s4) for strings s1, s2 strings s3, s4 s.t.
range(s1, s2) ⊆ range(s3, s4)

Table 6.1: Weakening and strengthening rules for core logic, reals and integers,
strings, and regexes. Symmetric cases are omitted for brevity. The
legend column describes newly introduced symbols per group.

116 weakening and strengthening/janus

cvc5 z3release

sat
unsat

0 25 50 75 100 0 25 50 75 100

1.2

1.6

2.0

0.5

1.0

1.5

2.0

2.5

3.0

#iterations

sp
ee

du
p

Figure 6.5: Z3 and cvc5 runtime performance averages on 1,000 evenly dis-
tributed sat/unsat nonlinear arithmetic benchmarks per weaken-
ing/strengthening iteration (1-100). Timeout: 8 seconds, files on which
timeouts occurred excluded.

500 unsatisfiable) and measured Z3 and cvc5’s runtime performance, after
100 weakening and strengthening steps and measured the average speedup.
Figure 6.5 shows the results of this experiment.

janus’s implementation. We built Janus on top of the SMT solver
testing framework YinYang [101] in 1.5k lines of Python code. Our imple-
mentation first parses and type checks a seed formula before incrementally
applying randomly selected mutation rules. After a fixed number of muta-
tions, we restart the mutation chain from the seed. Type checking allows
us to apply rules only when they are applicable and choose random terms
of the correct type. At each mutation step, we forward the mutants to the
SMT solvers to test for regression and implication incompleteness.

6.4 evaluation

From June 2021 - August 2021, we conducted a fuzzing campaign with
Janus. We deployed Janus on an AMD Ryzen Threadripper 3990X 64-Core
Processor with 256GB of RAM running Ubuntu 18.04. We experimented

6.4 evaluation 117

with the configuration of the fuzzer and a typical instance used 300 itera-
tions per seed, 25 incremental mutations before resetting the seed and a
solver timeout of 10 seconds. We tested the two state-of-the-art SMT solvers
Z3 and cvc5. We daily rebuilt the trunk versions of Z3 and cvc5 respectively,
and tested them in their default modes, i.e., without any additional options
besides --strings-exp for cvc5 to enable support for string logic. As seed
files, we used SMT-LIB benchmarks from the YinYang project which are
categorized into satisfiable and unsatisfiable instances. 3

bug trigger reduction We reduce bug triggers of both regression
and implication incompletenesses with the SMT-specific test-case reducer
ddsmt [81]. The tool repeatedly shrinks the bug-triggering formula while
maintaining an invariant specified by a user-defined script called the in-
terestingness test. The interestingness test is executed after each shrinking
operation of ddsmt returning exit code 0 if the shrinking operation was
admissible and 1 otherwise. Based on this feedback, ddsmt shrinks the
bug-triggering formula to a locally minimal size, usually small enough for
reporting on the issue trackers of Z3 and cvc5.

For regressions, where one solver reports sat/unsat on the bug-triggering
formulas and another one reports unknown unknown, we specify the interest-
ingness test by string matching the unknown of the second solver. Reducing
implication incompletenesses is more challenging as we have to keep two
related formulas in sync. Algorithm 7 shows a procedure realizing the
interestingness test for implication incompletenesses. The procedure takes
the bug-triggering formula φ, the rule m, and an SMT solver S as its input.
We first solve φ with S (line 2). If S decides φ, we proceed; otherwise, we
exit with 1 indicating that φ is not interesting (line 10). We retrieve all
subformulas from φ on which m is applicable in the set candidates (line 4).
We apply m to each subformula c, and obtain ψ (line 6). We check whether
S returns unknown on it (line 9) and if so, we return 0 indicating that formula
φ is an interesting input, i.e., triggers the bug.

bug trigger selection In our experiments, fuzzing for incomplete-
ness bugs with Janus resulted in too many bug triggers to report directly to
the issue trackers of the solvers. We hence manually selected the most inter-
esting cases. One source of cases is the fact that solvers typically implement
the full SMT-LIB standard in parsing, but their reasoning engines only sup-
port a subset. We filter out formulas with such unsupported features using

3 https://github.com/testsmt/semantic-fusion-seeds

https://github.com/testsmt/semantic-fusion-seeds

118 weakening and strengthening/janus

Algorithm 7 Interestingness test for implication incompletenesses
1: procedure interestingness_implication(φ, m, S)

2: r1 ← S(φ)

3: if r1 ∈ {sat, unsat} then

4: candidates← {e ∈ expr(φ) | m is applicable to e}
5: for c in candidates do

6: ψ← apply m to c in φ

7: r2 ← S(ψ)
8: if r2 = unknown then

9: return 0

10: return 1

basic text search tools, as they trivially trigger an unknown response and
provide no new insights to the developers. We continuously adapted our
selection process to the developer feedback and solver-specific behaviors.
The developers informed us of language features that are not expected to
be supported well or how specific logic solvers and options should be used
to validate incompletenesses.

bug findings Figure 6.6a shows the results of our bug-hunting cam-
paign with Janus. We have totally reported 31 incompleteness bugs, 13 in Z3

and 18 in cvc5. Out of these, 26 bugs got confirmed and 20 bugs got fixed.
There are 8 fixes in Z3, and 12 in cvc5 got fixed. We can partially explain
this by the different development styles of Z3 and cvc5. In Z3, many incom-
pleteness bugs were fixed on the spot by Z3’s main developer with the fix
being promptly pushed to Z3’s master branch. In cvc5, on the other hand,
several developers discuss issues, file pull requests, etc. Hence several of our
reports are still in the queue waiting to be merged to cvc5’s master branch.
Among the confirmed bugs, we found 19 regression incompleteness bugs
and 7 implication incompleteness bugs (see Figure 6.6b). We found more
regression bugs since the reduction process is faster. Out of the 31 reported
bugs, 5 regression incompletenesses in Z3 were categorized as rejected. Z3’s
main developer considered two of them acceptable incompletenesses in Z3.
Another one was rejected by Z3’s main developer since the bug did not
trigger in Z3’s new core. Z3’s new core is an experimental configuration,
intended at replacing the Z3’s current core in the future. Hence, Z3’s main
developer saw no benefit in fixing this issue in Z3’s current core. Another

6.4 evaluation 119

Status Z3 cvc5 Total

Reported 13 18 31

Confirmed 8 18 26

Fixed 8 12 20

Rejected 5 0 5

(a)

Type Z3 cvc5 Total

Regression 7 12 19

Implication 1 6 7

(b)

Figure 6.6: (a) Statuses of incompleteness bug reports, (b) types among the
confirmed incompleteness bug reports.

bug was rejected by Z3’s main developers since fixing it would interfere
with axioms of the string solvers. Yet another one was deemed a won’t fix
and disappeared after a recent code change in Z3.

0

2

4

6

LR
A

NIA
NRA

QF_N
IA

QF_N
RA

QF_S

QF_S
LI

A

QF_S
NIA S

SLI
A

#b
ug

s

CVC5
Z3

0

2

4

6

2 4 6 8 10 12

week

#b
ug

s

Figure 6.7: Left: Bug logic distribution of the reported bugs. Right: Bug reports
from the start to the end of the bug-hunting campaign.

logics distribution among the bugs Consider Figure 6.7 left for
an overview of the distribution among the reported bugs. Among the
reported bugs, we found 7 bugs in SLIA, 6 in NIA, 5 in QF_NRA, 3 in NRA,
2 in QF_S, 2 QF_SLIA, and 1 in QF_SNIA, S and LRA, respectively.

duration of the campaign & statistics The bug findings are
evenly distributed for the fuzzing campaign (see Figure 6.7 right). In the
last two weeks, we, in fact, withheld some of our bug findings to give
the developers time to fix the pending bugs from earlier weeks. During
the campaign from June 2021 to Aug 2021 Janus totally generated 106
million tests, among which 760k were unknown results. Most of these were
duplicates; after manual bug trigger selection, 426 remained. Since this was
still quite a large number to be reported, we were conservative in reporting

120 weakening and strengthening/janus

them to the issue trackers of Z3 and cvc5. We then reported 31 bugs to the
issue trackers of the solvers for the developers to inspect.

6.5 selected bug samples

This section analyzes exemplary bug reports to illustrate the diverse incom-
pleteness bugs that Janus can find, all depicted in Figure 6.8.

faulty mbqi implementation in z3 (figure 6 .8a). The formula
shows a bug in Z3’s of model-based quantifier instantiation (MBQI),
a procedure for quantifier elimination. For the reported formula,
MBQI repeatedly guesses values for universally quantified variables,
i.e., x in our case. However, Z3 fails to solve this simple formula,
which is unexpected as many values for x would satisfy the formula.
Interpreting the semantics of the "Is there a square number equal to
all integers?" lets us decide the formula to be unsatisfiable. A deeper
analysis revealed that if we massively increase MBQI’s iteration cutoff
to one million, Z3 could still not decide the formula. Z3’s main
developer fixed this bug, the cause was an uninitialized variable.

bug in cvc5 rewrite precedence rules (figure 6 .8b). Intuitively,
the formula is easily satisfiable by setting variable T to true in the first
assert. However, cvc5 returns unknown on the formula. The issue was
detected as a regression, stable legacy releases cvc5 1.8 and 1.7 can
decide the formula. Thanks to our report, cvc5 developers discovered
that a set of newer rewrite rules were taking precedence over older
rewrites. A cvc5 developer described this as follows:

"Commit 11c1fba added new rewrites for ITE. Due to the new
rewrites taking precedence over existing rewrites, it could happen
that some of the previous rewrites did not apply anymore even
though they would have further simplified the ITE."

The bug was roughly one-year latent which the referenced commit
indicates. It was undetected by the ongoing SMT solver fuzzing cam-
paigns and cvc5’s test suites. The developers fixed this bug by adjust-
ing the precedence rules in the rewriter.

completeness regression in z3’s lra logic (figure 6 .8c).
The formula belongs to the essentially propositional logic which is
decidable. The formula contains a single quantifier over a boolean
variable which could be eliminated by grounding (setting x to true

6.5 selected bug samples 121

1 (declare-const x Int)
2 (assert (forall
3 ((v Int)) (= v (* x x))))
4 (check-sat)

(a) Incompleteness bug in Z3 caused by
faulty MBQI implementation.
https://github.com/Z3Prover/z3/issues/5376

1 (declare-const T Bool)
2 (declare-const v String)
3 (assert (ite T T true))
4 (assert (or T (and (str.prefixof v "")
5 (exists ((x Int)) (= "t"
6 (str.substr v 0 x))))))
7 (check-sat)

(b) Incompleteness in cvc5 caused by
faulty rewrite precedence rules.
https://github.com/cvc5/cvc5/issues/6717

1 (declare-const x2 Bool)
2 (declare-const x9 Bool)
3 (declare-fun x () Real)
4 (assert (< x (ite (forall
5 ((x Bool)) (ite x x9 x2)) 0.0 1.0)))
6 (check-sat)

(c) Regression in Z3 in a decidable logic
(booleans + linear real arithmetic)
https://github.com/Z3Prover/z3/issues/5340

1 (declare-const P String)
2 (declare-const T String)
3 (assert (=
4 (str.is_digit T)
5 (str.is_digit P)))
6 (check-sat)

(d) Bug on string formula in Z3 caused by
unhandled str.is_digit.
https://github.com/Z3Prover/z3/issues/5491

1 (declare-const a Bool)
2 (declare-fun b () Real)
3 (assert (or a (= 0
4 (* b b b))))
5 (assert (> (* b b) 3))
6 (check-sat)

(e) Completeness regression in cvc5’s
QF_NRA logic.
https://github.com/cvc5/cvc5/issues/6798

1 (declare-const u Bool)
2 (declare-fun v () String)
3 (assert (exists ((x Int))
4 (or (not (>= 0 (str.len
5 (str.substr (str.replace_re ""
6 (str.to_re v) v) x 1)))) u)))
7 (check-sat)

(f) Regression with existential quantifier
elimination.
https://github.com/cvc5/cvc5/issues/6727

1 (declare-const x Int)
2 (declare-fun T () Int)
3 (declare-fun va () String)
4 (assert (distinct (str.from_int T)
5 (str.replace va (str.replace ""
6 va "") (str.from_int (- x)))))
7 (check-sat)

(g) Regression bug in Z3 which led to new
rewrite being implemented.
https://github.com/Z3Prover/z3/issues/5399

1 (declare-const s Real)
2 (assert (or (or false (= 0.0 s))
3 (< (* s (+ 6 (* s 12))) (- 1))))
4 (check-sat)

(h) Order sensitivity (or) which raised a
discussions among the developers.
https://github.com/cvc5/cvc5-projects/issues/279

Figure 6.8: Selected bug samples in Z3 and cvc5.

https://github.com/Z3Prover/z3/issues/5376
https://github.com/cvc5/cvc5/issues/6717
https://github.com/Z3Prover/z3/issues/5340
https://github.com/Z3Prover/z3/issues/5491
https://github.com/cvc5/cvc5/issues/6798
https://github.com/cvc5/cvc5/issues/6727
https://github.com/Z3Prover/z3/issues/5399
https://github.com/cvc5/cvc5-projects/issues/279

122 weakening and strengthening/janus

and false). Hence, we would expect SMT solvers to decide the formula.
However, Z3 returns unknown on it. Z3’s main developer fixed the bug
by refining the default tactic of Z3.

incompleteness bug on string formula in z3 (figure 6 .8d).
The formula equates two str.is_digit expressions, each with a free
string variable as a single argument. This formula should be sat. How-
ever, Z3 could not decide it, returning unknown since Z3 did not handle
str.is_digit although it can decide other string formulas with such
expressions. The bug was detected as an implication incompleteness
and was promptly fixed by Z3’s main developer.

completeness regression in cvc5’s qf_nra logic (figure 6 .8e).
The formula shows a completeness regression in cvc5 on a formula
that legacy cvc5 1.7 could still decide. The bug was confirmed by a
cvc5 developer. and was marked with the label "bug" on the cvc5 issue
tracker reflecting its high priority.

regression with quantifier elimination in cvc5 (figure 6 .8f).
The formula contains a single existential quantifier and could not be
solved by cvc5. If the existentially quantified variable is however re-
moved, cvc5 can decide the formula. The developer’s feedback was
that they will consider enabling pre-skolemization by default, i.e. com-
piling away existential quantifiers. He delegated this issue to one of
his fellow developers for the fixing.

discovering a new str .replace rewrite in z3 (figure 6 .8g)
This formula contains the term (str.replace "" va "") which is equiv-
alent to the empty string "". Z3 returned unknown for the shown for-
mula, but correctly solved it as sat after we manually performed this
rewrite step. To fix the issue, the developers added this exact rewrite
step to the string rewriter component of the solver.

order sensitivity of or in cvc5 (figure 6 .8h). This case showed
the following behavior: The solver result changes from sat to unknown

when replacing a subformula f with the equivalent (or false f).
From a user’s perspective, this is surprising behavior and one might
expect the solver to be robust against such minor simplifications.
Indeed, the solver does simplify (or false f) to f but this changes
the internal order of disjuncts which triggers the unknown.

6.6 related work 123

"The underlying reason is [...] due to cvc5 being sensitive to the
order of the terms."

"[...] Indeed, false is removed by rewriting as one would expect,
and the unknown is due to the ordering."

After careful analysis, the developers solved deemed incompleteness
as an acceptable artifact of the solver’s internals. Nevertheless, they
kept the issue in a collection of challenges.

6.6 related work

Our approach is particularly related to the prior works on SMT solver
robustness testing [1, 2, 30, 32, 63]. Closely related is Bugariu and Müller’s
approach [63]. Bugariu and Müller’s formula rule-based synthesizer gener-
ates formulas that are by construction satisfiable or unsatisfiable. However,
different from our approach they use equivalence-preserving rules and
their approach is limited to string formulas. Another closely related work is
Sparrow [21]. Similar to Janus, Sparrow uses over and under-approximation
to produce equisatisfiable mutant formulas by the insertion of randomly
synthesized subformulas. Sparrow also tested the SMT solvers Z3 and cvc5

and reportedly found around 80 bugs in various non-default configuration
combinations and solver modes. The main conceptual difference is that
mutants produced by Sparrow are less closely related than Janus’s mu-
tants since Sparrow replaces large terms within the seed formula. On the
other hand, the idea behind Janus’s ruleset is to make small incremental
changes to the seed formula that are feasible for the developers to analyze.
Unfortunately, Sparrow is not publicly available and rendering a thorough
analysis of its technical differences from Janus impossible. Different from
both approaches, Janus targets incompleteness bugs in SMT solvers in their
default modes and only finds soundness and crash bugs as by-products.

Janus is also related to SMT solver performance fuzzing. Lascu et al. [2022]
propose a metamorphic approach MF++ for fuzzing C++ libraries. It found
21 new bugs in the four SMT solver libraries (Z3, cvc5, Yices2, Boolector)
and two Presburger arithmetic libraries (Omega & isl) including several
incompleteness bugs. Incompleteness and performance bugs were also
encountered in the context of program verifiers such as Dafny [109]. Mari-
posa [110] is a recent tool to quantify instability of SMT queries where insta-
bility is defined as a performance difference caused by assertion shuffling,
symbol renaming, or under varying random seeds. Mariposa moreover

124 weakening and strengthening/janus

features a benchmark set to evaluate proof stability. Besides domain-specific
approaches to SMT and program verification, Janus is also related to general
performance fuzzing. SlowFuzz [111] is an approach to finding complexity
vulnerabilities in sorting and compression algorithms, PerfFuzz [112] is a
tool using coverage guidance to find performance bugs along frequently
executed program paths, and Ga-Proof [113] uses a genetic algorithm to
detect performance bugs with inputs encoded as genes. Different from
Janus, these approaches use runtime differences to identify bugs while
Janus detects bugs based on the standard output of SMT solvers.

7
VA L I D AT I N G S M T S O LV E R S F O R C O R R E C T N E S S A N D
P E R F O R M A N C E V I A G R A M M A R - B A S E D E N U M E R AT I O N

This chapter presents Grammar-based Enumeration, a systematic approach
for validating and understanding SMT solvers. Realized by our tool ET, the
approach has many complimentary benefits. Besides finding correctness
bugs in SMT solvers, ET is specifically suitable for performance bugs. ET
can be used to understand the evolution of solvers by deriving grammars
for all major SMT theories. In a large-scale experiment, we test all releases
of Z3 and CVC4/cvc5 from the last six years. The results suggest improved
correctness in recent solver versions but decreased performance in newer
releases of Z3 and regressions of early cvc5 releases.

7.1 motivation

Satisfiability modulo theory (SMT) solvers are foundational for many ap-
plications and systems in academia [8, 9, 10, 11, 12] and industry [16, 17,
52]. Hence, SMT solvers must be both correct and performant, particularly
in safety-critical and security-critical domains. In the last several years,
there has been much effort on improving SMT solvers, especially through
fuzzing [1, 2, 21, 32]. Z3 and cvc5 are the two most powerful SMT solvers
and are very reliable. Developers of Z3 and cvc5 fixed hundreds of cor-
rectness and performance bugs found by fuzzers. As a result of these and
other fixes, SMT solvers have greatly matured. However, despite this, all
existing fuzzers are unsystematic focusing on random testing. Unsystematic
testing can lead to missed bugs and does not provide any guarantees. Con-
sider, e.g., the formula in Figure 7.1 which manifests a critical soundness
bug in cvc5. The "declare-fun" statements specify two real variables, the
"assert" specifies the constraints, and the "check-sat" queries the solver.
The formula is satisfiable because for a = −1 the expression evaluates to
tan(sin(sin(−1))) ≈ −0.923 > −1. However, cvc5 incorrectly returns unsat.
Apart from the soundness issue, it also uncovers a bug in the type-checker.
Despite the simplicity of the bug, no ongoing fuzzing campaign, unit test,
or user detected it. We reported this bug to cvc5’s issue tracker. It got a
"major" label and was promptly fixed by a cvc5 developer.

125

126 grammar-based enumeration/et

(declare-const a Int)

(assert (> (tan (sin (sin a))) a))

(check-sat)

Figure 7.1: Critical soundness bug in cvc5 found by our tool ET.
https://github.com/cvc5/cvc5/issues/10534

validating smt solvers via grammar-based enumeration This
work changes the perspective on testing SMT solvers, advocating for sys-
tematic, grammar-based enumeration rather than random-based testing. We
propose ET, a grammar-based enumeration tool for SMT solvers. We com-
pile context-free grammars of the SMT theories to algebraic datatypes and
leverage FEAT [33], an approach for functional enumeration. This realizes
a test generator which ET couples with an oracle to perform differential
testing between the solvers. Given a context-free grammar G, a number of
tests N, and two or more SMT solvers, ET stress-tests each solver with the
N-smallest inputs w.r.t. G. This approach has multiple unique benefits: (1)
it exploits the small scope hypothesis which states that most bugs trigger on
small-sized inputs [34, 35], (2) because of the small-sized bug triggers it is
particularly suitable for identifying performance issues, and (3) it provides
bounded correctness guarantees.1 Our evaluation shows that ET is highly
effective at bug finding in SMT solvers. We further demonstrate how ET can
be used to understand the evolution of solvers, and thanks to its systematic
nature and efficiency, we advocate its use for continuous integration.

bug hunting campaign Using ET, we conducted a large-scale fuzzing
campaign for correctness and performance bugs in the state-of-the-art SMT
solvers Z3 and cvc5. We reported 102 bugs among which 76 bugs were
confirmed and 32 bugs were already fixed. We found bugs in various
SMT theories, including arrays, floating points, real and integer arithmetic,
strings etc. Even though SMT solvers have been extensively and continu-
ously tested, we are still able to quickly find these bugs while the benefits
of the other fuzzers seem to have saturated. We validated the developer’s
fixes including soundness, invalid models, crashes, and performance bugs.
Among ET’s soundness bug findings was another critical bug in cvc5-0.0.5’s
real arithmetic. The bug goes back to the major change from cvc4-1.8 to cvc5

and remained undetected for more than one and a half years. It was labeled
"major" and was promptly fixed. Besides uncovering critical soundness

1 ET provides bounded guarantees w.r.t.the grammar G and the differential oracle.

https://github.com/cvc5/cvc5/issues/10534

7.1 motivation 127

Z3 CVC4/5
z3

−4
.5

.0
z3

−4
.6

.0
z3

−4
.7

.1
z3

−4
.8

.1
z3

−4
.8

.3
z3

−4
.8

.4
z3

−4
.8

.5
z3

−4
.8

.6
z3

−4
.8

.7
z3

−4
.8

.8
z3

−4
.8

.9
z3

−4
.8

.1
0

z3
−4

.8
.1

1
z3

−4
.8

.1
2

z3
−4

.8
.1

3
z3

−4
.8

.1
4

z3
−4

.8
.1

5
z3

−4
.8

.1
6

z3
−4

.8
.1

7
z3

−4
.9

.0
z3

−4
.9

.1
z3

−4
.1

0.
0

z3
−4

.1
0.

1
z3

−4
.1

0.
2

z3
−4

.1
1.

0
z3

−4
.1

1.
2

z3
−4

.1
2.

0
z3

−4
.1

2.
1

z3
−4

.1
2.

2
z3

−4
.1

2.
3

z3
−4

.1
2.

4
z3

−4
.1

2.
5

z3
−4

.1
2.

6
z3

−4
.1

3.
0

cv
c4

−1
.5

cv
c4

−1
.6

cv
c4

−1
.7

cv
c4

−1
.8

cv
c5

−0
.0

.2
cv

c5
−0

.0
.3

cv
c5

−0
.0

.4
cv

c5
−0

.0
.5

cv
c5

−0
.0

.6
cv

c5
−0

.0
.7

cv
c5

−0
.0

.8
cv

c5
−0

.0
.1

0
cv

c5
−0

.0
.1

1
cv

c5
−0

.0
.1

2
cv

c5
−1

.0
.0

cv
c5

−1
.0

.1
cv

c5
−1

.0
.2

cv
c5

−1
.0

.3
cv

c5
−1

.0
.4

cv
c5

−1
.0

.5
cv

c5
−1

.0
.6

cv
c5

−1
.0

.7
cv

c5
−1

.0
.8

cv
c5

−1
.0

.9
cv

c5
−1

.1
.0

cv
c5

−1
.1

.1
cv

c5
−1

.1
.2

100

10,000

1,000,000

solver

bu

g
tr

ig
ge

rs

Number of bug triggers by solver

Z3 CVC4/5

0.015625s
8s

z3
−4

.5
.0

z3
−4

.6
.0

z3
−4

.7
.1

z3
−4

.8
.1

z3
−4

.8
.3

z3
−4

.8
.4

z3
−4

.8
.5

z3
−4

.8
.6

z3
−4

.8
.7

z3
−4

.8
.8

z3
−4

.8
.9

z3
−4

.8
.1

0
z3

−4
.8

.1
1

z3
−4

.8
.1

2
z3

−4
.8

.1
3

z3
−4

.8
.1

4
z3

−4
.8

.1
5

z3
−4

.8
.1

6
z3

−4
.8

.1
7

z3
−4

.9
.0

z3
−4

.9
.1

z3
−4

.1
0.

0
z3

−4
.1

0.
1

z3
−4

.1
0.

2
z3

−4
.1

1.
0

z3
−4

.1
1.

2
z3

−4
.1

2.
0

z3
−4

.1
2.

1
z3

−4
.1

2.
2

z3
−4

.1
2.

3
z3

−4
.1

2.
4

z3
−4

.1
2.

5
z3

−4
.1

2.
6

z3
−4

.1
3.

0
cv

c4
−1

.5
cv

c4
−1

.6
cv

c4
−1

.7
cv

c4
−1

.8
cv

c5
−0

.0
.2

cv
c5

−0
.0

.3
cv

c5
−0

.0
.4

cv
c5

−0
.0

.5
cv

c5
−0

.0
.6

cv
c5

−0
.0

.7
cv

c5
−0

.0
.8

cv
c5

−0
.0

.1
0

cv
c5

−0
.0

.1
1

cv
c5

−0
.0

.1
2

cv
c5

−1
.0

.0
cv

c5
−1

.0
.1

cv
c5

−1
.0

.2
cv

c5
−1

.0
.3

cv
c5

−1
.0

.4
cv

c5
−1

.0
.5

cv
c5

−1
.0

.6
cv

c5
−1

.0
.7

cv
c5

−1
.0

.8
cv

c5
−1

.0
.9

cv
c5

−1
.1

.0
cv

c5
−1

.1
.1

cv
c5

−1
.1

.2

0

2,000,000

4,000,000

6,000,000

8,000,000

7,900,000

7,950,000

8,000,000

solver

so

lv
ed

 fo
rm

ul
as

Number of Solved formulas

Figure 7.2: Evolution results for Z3 & CVC4/cvc5 releases from the last six years.
Top: correctness in number of bug triggers. Bottom: performance in
number of solved formulas.

bugs, a key advantage of ET’s small-sized formulas is their suitability for
identifying performance issues.

understanding the evolution of smt solvers Quantifying
solver evolution helps developers understand long-term effects and users
to judge particular features. With ET, we tested all consecutive versions
of the SMT solvers Z3 and CVC4/cvc5 from the last six years (61 solvers).
We devised eight grammars for the official SMT theories, generated one
million formulas per grammar, and forwarded the formulas to the solvers.
We tracked the solver’s results and running time. Our correctness results
reveal that both solvers have greatly matured (see Figure 7.2 top) with
downward trends in the number of bug triggers. Perhaps most notably,
both solvers have greatly matured in the theory of Strings, manifesting no
bug triggers since many releases. This is striking as the theory of Strings
was long considered to be among the most unstable.

For performance, we tracked the number of solved formulas from the
lowest timeout of 0.015625s to the highest timeout of 8s. Lower timeouts
help understand small aggregating effects while higher timeouts help
understand performance regressions. For the lowest timeout 0.015625s,

128 grammar-based enumeration/et

CVC4/cvc5’s performance is roughly constant, but the performance of Z3

versions from 4.8.11 onwards worsened bottom. For the highest timeout
of 8s, Z3 is roughly constant while cvc5’s performance declines and then
recovers. There is a decline from cvc4-1.8 to cvc5-0.0.2 caused by formulas
in the Bitvector which is recovered in cvc5-0.0.8. Most recently, we observed
regressions in the theory of Arrays beginning at cvc5-1.0.2 to cvc5-1.1.2.

practicality of et as a monitoring tool We explore the prac-
ticality of ET for correctness and performance monitoring on commodity
hardware. Investigating our data, we observe that 99% of bugs trigger
within the first 120,000 formulas, and 80% occur within the first 51,000

formulas. We further observe that 40% of the total time is spent on the
floating point theory. Exploiting these empirical facts, we can construct a
pipeline that limits the formula count to 51,000 (120,000) and excludes the
FP theory. Feasible realizations take three hours and 23 minutes for Z3 to
cover 80% of the bugs, and one hour and 18 minutes for cvc5 to cover 99%.

7.2 illustrative example

This section illustrates our approach. To utilize the functional enumeration
capability of FEAT, a necessary step is to compile context-free grammars of
the SMT theories to regular tree grammars. This realizes a grammar-based
enumerator which we couple with a differential oracle for cross-checking
the results of the SMT solvers under test. The following steps illustrate this.

1 . devise grammar for smt theory. We first devise a context-free
grammar for a dedicated SMT theory such as the theory of Arrays,
which is important for many applications. We derive GArrays from a
generic SMT-LIB grammar and include one array variable, one bitvec-
tor variable, and two constants (see Figure 7.3a).

2 . compile context-free to regular tree grammar . We compile
the context-free grammar to a regular tree grammar as follows:
for each production lhs → rhsi in GArrays, we create a production
lhs→ Clhs

i rhsi with a fresh constructor Clhs
i . E.g, consider the produc-

tions of nonterminal arr_term (see Figure 3b) which is compiled into
an algebraic datatype of a functional programming language.

7.2 illustrative example 129

grammar Arrays;

type_arr:’(Array (_ BitVec 64) (_ BitVec 64))’;

type_bv: ’(_ BitVec 64)’;

bv_const: ’#x0000000000000000’

| ’#x1111111111111111’;

var_a: ’a’;

var_b: ’b’;

uop_bv: ’bvnot’|’bvneg’;

bop_bv: ’bvand’|’bvor’|’bvadd’|’bvmul’

|’bvudiv’|’bvurem’|’bvshl’|’bvlshr’;

bv_term: bv_const | var_b

|’(’ uop_bv bv_term ’)’

|’(’ bop_bv bv_term bv_term ’)’

|’(select’ arr_term bv_term ’)’;

arr_term: var_a

|’(store’ var_a bv_term bv_term ’)’;

bop_arr: ’=’ | ’distinct’;

bool_term: ’(’ bop_arr arr_term arr_term ’)’;

decl_csta:’(declare-const’ var_a type_arr ’)’;

decl_cstb:’(declare-const’ var_b type_bv ’)’;

assert_stmt:’(assert’ bool_term ’)’;

check_sat: ’(check-sat)’;

start: decl_csta decl_cstb assert_stmt check_sat;

(a) Grammar for the theory of Arrays GArrays

arr_term: var_a

|’(store’ var_a bv_term bv_term ’)’;

↓
data Arr_term = C0_arr_term Var_a

| C1_arr_term PO Store Var_a Bv_term Bv_term PC

(b) Compilation of a single production

(declare-const a (Array (_ BitVec 64) (_ BitVec 64)))

(declare-const b (_ BitVec 64))

(assert (= (store a (bvadd b b)

(bvadd b #x1111111111111111))(store (store a

#x1111111111111111 b) (bvadd b b) (bvneg b))))

(check-sat)

(c) φArrays enumerated by ET (cvc5#8274)

cv
c5

-0
.0

.2

cv
c5

-0
.0

.3

cv
c5

-0
.0

.4

cv
c5

-0
.0

.5

cv
c5

-0
.0

.6

cv
c5

-0
.0

.7

cv
c5

-0
.0

.8

cv
c5

-0
.0

.1
0

cv
c5

-0
.0

.1
1

cv
c5

-0
.0

.1
2

cv
c5

-1
.0

.0

cv
c5

-1
.0

.1

cv
c5

-1
.0

.2

cv
c5

-1
.0

.3
-9

cv
c5

-1
.1

.0
-2

sat sat sat sat sat sat sat sat sat sat sat sat sat unsat unsat

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

(d) Solver results on formula φArrays

Figure 7.3: Grammar-based enumeration with ET illustrated.

3 . integrate regular tree grammar with feat and oracle . We
couple the regular tree grammar with the functional enumeration li-
brary FEAT. Given a desired number of tests N (e.g., one million),
leveraging FEAT, we enumerate the N-smallest formulas from GArrays.

4 . running et . We run ET with an oracle to cross-check all tests with
the SMT solver Z3 and cvc5 writing correctness and performance
bugs such as φArrays to disk (Figure 7.3c).

The formula φArrays is a real case. Z3 and cvc5 give different results on
φArrays. Z3 correctly returns unsat while cvc5 incorrectly reports sat on it.
The bug has propagated seven releases and was fixed in cvc5 (Figure 7.3d).
We have reported it to cvc5’s issue tracker and it was fixed recently.

https://github.com/cvc5/cvc5/issues/8274

130 grammar-based enumeration/et

7.3 grammar-based enumeration

This section (1) gives basic definitions, (2) formally introduces grammar-
based enumeration, (3) describes ET’s implementation, and (4) describes
how we derive SMT theory grammars.

definitions A context-free grammar (CFG) G = ⟨N, Σ, P, S⟩ consists of
nonterminals N, terminals Σ, productions P, and a start symbol S from
N. We assume G’s productions to partition into two sets: productions
yielding solely terminals PΣ, and nonterminals PN , respectively. A regular
tree grammar (RTG) GRTG = ⟨N′, Σ′, P′, S′⟩ consists of nonterminals N′,
ranked alphabet Σ′, productions P′ and a start symbol S′. The elements in Σ′

have constructors with arities. Terminals are realized as nullary constructors
and constructors C(·) of strictly positive arity represent tree patterns. We
view algebraic datatypes as instantiations of RTGs. The next definition
shows how we compile a context-free grammar into the language of RTG.

Definition 7.3.1 (Context-free to regular tree grammar). We compile context-
free grammar G = ⟨N, Σ, PΣ ∪ PN , S⟩ into regular tree grammar RTG(G) =
⟨N′, Σ′, P′, S′⟩ as follows:

• N′ = N and S′ = S

• Σ′ = Σ ∪ { Clhs
i | plhs

i ∈ PN}

• P′ = {lhs→ Clhs
i rhsi | plhs

i ∈ PN} ∪ PΣ

where pi
lhs ∈ PN is the i-th production rule of the form lhs→ rhsi.

The compilation enables to leverage FEAT, the powerful functional enu-
meration tool realizing close to random access to words in regular tree
grammars. The following paragraph gives background on FEAT.

functional enumeration of algebraic types [33] FEAT is a
sized-based enumeration tool for algebraic datatypes. In a nutshell, FEAT’s
core functionality can be viewed as a function FEAT : N→ L(GRTG) from
the natural numbers to the language of GRTG. Each element φi = FEAT(i)
has an associated size(φi) which is the number of nonterminals necessary
to generate φi. E.g., consider the following formula of size 4 from the Core
theory (see Figure 7.4a).

(declare-const a Bool) (declare-const b Bool) (assert false) (check-sat)

7.3 grammar-based enumeration 131

Algorithm 8 Pseudocode of ET’s main prcoess.
1: procedure ET(G, O, N) ▷ CFG G, oracle O, number of tests N
2: bug_triggers← []

3: GRTG ← RTG(G) ▷ Compilation based on Definition 7.3.1

4: for φi ∈ FEAT(GRTG)[0 : N] do ▷ Loop in parallel

5: bug_found, tracei ← O(φi) ▷ Oracle check

6: if bug_found then

7: bug_triggers← bug_triggers.append((φi, tracei))

Four nonterminals are necessary to realize this formula. Hence changing
false to true, or a to b will not increase size. However, recursion increases
size by one i.e., the following formula has a size of five:

(declare-const a Bool) (declare-const b Bool) (assert (not false)) (check-sat)

FEAT realizes a partition of L(GRTG) based on size. Moreover, FEAT realizes
random access to elements in L(GRTG). We write FEAT(GRTG)[0 : N] to
denote the N-smallest elements of GRTG.

et ’s realization We next describe ET’s realization. ET takes as inputs
a context-free grammar G, an oracle O, and a desired number of tests N.
The following pseudocode shows ET’s main process (Figure 8). ET starts
by initializing a list bug_triggers (Line 2). Next, it compiles the context-free
grammar G to regular tree grammar GRTG (Line 3). Then, we use FEAT to
generate N tests through which we iterate (Line 4). For every formula φi,
we perform an oracle check calling the SMT solvers. If the oracle detects a
bug, we save the bug trigger φi along with a trace tracei (Line 7). The oracle
can be implemented in different ways, i.e., by differentially testing, calling
a certified solver etc. ET is implemented in 103 lines of Python and Bash.

deriving grammars for the smt theories A key ingredient of
our approach are the grammars. We derive one grammar per official SMT
theory including the booleans (Core), integers (Ints), real numbers (Reals),
mixed reals and integers (RealInts), bitvectors (FixedSizeBitVectors), arrays
(ArraysEx), floating point numbers (FP), and unicode strings (Strings).
As a template, we use a generic SMT-LIB grammar from the ANTLR
grammar repository. 2 We studied the theory specifications to ensure that

2 https://github.com/antlr/grammars-v4/blob/master/smtlibv2/SMTLIBv2.g4

https://github.com/antlr/grammars-v4/blob/master/smtlibv2/SMTLIBv2.g4

132 grammar-based enumeration/et

1 grammar Core;

2 type_bool: ’Bool’;

3 bool_const: ’true’|’false’;

4 var: ’a’|’b’;

5 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

6 bool_term: bool_const | var

7 |’(not’ bool_term ’)’

8 |’(’ binop_bool bool_term bool_term ’)’

9 |’(ite’ bool_term bool_term bool_term ’)’;

10 decl_csts: ’(declare-const’ var type_bool ’)’;

11 assert_stmt: ’(assert’ bool_term ’)’;

12 check_sat: ’(check-sat)’;

13 start: decl_csts assert_stmt check_sat;

(a) Core

1 grammar Arrays;

2 type_arr: ’(Array (_ BitVec 64) (_ BitVec 64))’;

3 type_bv: ’(_ BitVec 64)’;

4 bv_const: ’#x0000000000000000’

5 |’#x1111111111111111’;

6 var_a: ’a’;

7 var_b: ’b’;

8 uop_bv: ’bvnot’|’bvneg’;

9 bop_bv: ’bvand’|’bvor’|’bvadd’|’bvmul’

10 |’bvudiv’|’bvurem’|’bvshl’|’bvlshr’;

11 bv_term: bv_const | var_b

12 |’(’ uop_bv bv_term ’)’

13 |’(’ bop_bv bv_term bv_term ’)’

14 |’(select’ arr_term bv_term ’)’;

15 arr_term: var_a

16 |’(store’ var_a bv_term bv_term ’)’;

17 bop_arr: ’=’|’distinct’;

18 bool_term: ’(’ bop_arr arr_term arr_term ’)’;

19 decl_csta: ’(declare-const’ var_a type_arr ’)’;

20 decl_cstb: ’(declare-const’ var_b type_bv ’)’;

21 assert_stmt: ’(assert’ bool_term ’)’;

22 check_sat: ’(check-sat)’;

23 start: decl_csta decl_cstb assert_stmt check_sat;

(b) Arrays

1 grammar Bitvectors;

2 type_bv: ’(_ BitVec 64)’;

3 bv_const: ’#x0000000000000000’

4 | ’#x1111111111111111’;

5 var: ’a’ | ’b’;

6 uop_bv: ’bvnot’|’bvneg’;

7 bop_bv: ’bvand’|’bvor’|’bvadd’|’bvmul’|’bvudiv’

8 |’bvurem’|’bvshl’| ’bvlshr’;

9 bv_term : bv_const | var

10 | ’(’ uop_bv bv_term ’)’

11 | ’(’ bop_bv bv_term bv_term ’)’;

12 int_const: ’0’ | ’1’;

13 int_term : int_const | ’(bv2nat’ bv_term ’)’;

14 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

15 binop_real_bool: ’=’|’>’|’<’|’>=’|’<=’;

16 binop_bv_bool: ’bvult’| ’=’|’distinct’;

17 binop_bv_int: ’=’|’distinct’;

18 bool_term: ’(not’ bool_term ’)’

19 | ’(’ binop_bool bool_term bool_term ’)’

20 | ’(ite’ bool_term bool_term bool_term ’)’

21 | ’(’ binop_bv_bool bv_term bv_term ’)’

22 | ’(’ binop_bv_int int_term int_term ’)’;

23 decl_csts: ’(declare-const’ var type_bv ’)’;

24 assert_stmt: ’(assert’ bool_term ’)’;

25 check_sat: ’(check-sat)’;

26 start: decl_csts assert_stmt check_sat;

(c) Bitvectors

1 grammar Ints;

2 type_int: ’Int’;

3 int_const: ’0’|’1’;

4 var: ’a’|’b’;

5 uop_int: ’-’|’abs’;

6 bop_int: ’-’|’+’|’*’|’div’|’mod’;

7 int_term: int_const | var

8 | ’(’ uop_int int_term ’)’

9 | ’(’ bop_int int_term int_term ’)’;

10 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

11 binop_int_bool: ’=’|’>’|’<’|’>=’|’<=’;

12 bool_term: ’(not’ bool_term ’)’

13 | ’(’ binop_bool bool_term bool_term ’)’

14 | ’(ite’ bool_term bool_term bool_term ’)’

15 | ’(’ binop_int_bool int_term int_term ’)’;

16 decl_csts: ’(declare-const’ var type_int ’)’;

17 assert_stmt: ’(assert’ bool_term ’)’;

18 check_sat: ’(check-sat)’;

19 start: decl_csts assert_stmt check_sat;

(d) Ints

1 grammar Reals;

2 type_real: ’Real’;

3 real_const: ’0.0’|’1.0’;

4 var: ’a’|’b’;

5 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

6 binop_real_bool: ’=’|’>’|’<’|’>=’|’<=’;

7 uop_real: ’sin’|’cos’|’tan’;

8 binop_real: ’-’| ’+’|’*’|’/’| ’mod’;

9 real_term: real_const | var

10 | ’(’ uop_real real_term ’)’

11 | ’(’ binop_real real_term real_term ’)’;

12 bool_term: ’(not’ bool_term ’)’

13 | ’(’ binop_bool bool_term bool_term ’)’

14 | ’(ite’ bool_term bool_term bool_term ’)’

15 | ’(’ binop_real_bool real_term real_term ’)’;

16 decl_csts: ’(declare-const’ var type_real ’)’;

17 assert_stmt: ’(assert’ bool_term ’)’;

18 check_sat: ’(check-sat)’;

19 start: decl_cst assert_stmt check_sat;

(e) Reals

1 grammar FP;

2 type_fp: ’(_ FloatingPoint 11 53)’;

3 fp_const: ’(fp #b0 #b0{11} #b0{64})’

4 | ’(fp #b1 #b1{11} #b1{64})’;

5 var: ’a’|’b’;

6 rm: ’RNE’|’RNA’|’RTP’|’RTN’|’RTZ’;

7 bop_bool: ’=’|’distinct’|’fp.leq’|’fp.lt’|’fp.eq’

8 |’fp.geq’|’fp.leq’|’fp.gt’|’fp.lt’;

9 uop_fp: ’fp.abs’|’fp.neg’;

10 bop_fp: ’fp.rem’|’fp.min’|’fp.max’;

11 top_rm_fp: ’fp.add’|’fp.sub’|’fp.mul’

12 |’fp.div’|’fp.fma’;

13 bop_rm_fp: ’fp.sqrt’|’fp.roundToIntegral’;

14 fp_term: fp_const | var

15 | ’(’ uop_fp fp_term ’)’

16 | ’(’ top_rm_fp rm fp_term fp_term ’)’

17 | ’(’ bop_rm_fp rm fp_term ’)’

18 | ’(’ bop_rm_fp rm fp_term ’)’

19 | ’(’ bop_fp fp_term fp_term ’)’;

20 bool_term: ’(’ bop_bool fp_term fp_term ’)’;

21 decl_csts: ’(declare-const’ var type_fp ’)’;

22 assert_stmt: ’(assert’ bool_term ’)’;

23 check_sat: ’(check-sat)’;

24 start: decl_csts assert_stmt check_sat;

(f) FP

Figure 7.4: Derived grammars for the SMT theories.

7.3 grammar-based enumeration 133

1 grammar RealInts;

2 type_real: ’Real’;

3 type_int: ’Int’;

4 int_const: ’0’|’1’;

5 real_const: ’0.0’|’1.0’;

6 var_a: ’a’;

7 var_b: ’b’;

8 uop_int: ’-’|’abs’;

9 bop_int: ’-’|’+’|’*’|’div’|’mod’;

10 uop_real_int: ’to_int’;

11 int_term: int_const | var_a

12 | ’(’ uop_int int_term ’)’

13 | ’(’ binop_real int_term int_term ’)’

14 | ’(’ uop_real_int ’)’;

15 uop_real: ’sin’ |’cos’ |’tan’;

16 binop_real: ’-’ | ’+’ | ’*’ | ’/’ | ’mod’;

17 real_term: real_const | var_b

18 | ’(’ uop_real real_term ’)’

19 | ’(’ binop_real real_term real_term ’)’

20 | ’(’ ’to_real’ real_term ’)’;

21 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

22 binop_real_bool: ’=’ | ’>’ | ’<’ | ’>=’ | ’<=’;

23 bool_term: ’(not’ bool_term ’)’

24 | ’(’ binop_bool bool_term bool_term ’)’

25 | ’(ite’ bool_term bool_term bool_term ’)’

26 | ’(’ binop_real_bool real_term real_term ’)’;

27 decl_csta: ’(declare-const’ var_a type_int ’)’;

28 decl_cstb: ’(declare-const’ var_b type_real ’)’;

29 assert_stmt: ’(assert’ bool_term ’)’;

30 check_sat: ’(check-sat)’;

31 start: decl_csta decl_cstb assert_stmt check_sat;

(a) RealInts

1 grammar Strings;

2 type_str: ’String’;

3 str_const: ’""’ | ’"a"’;

4 int_const: ’0’|’1’;

5 regex_const: ’re.none’|’re.all’|’re.allchar’;

6 var: ’a’ | ’b’;

7 bop_str: ’str.++’;

8 top_str: ’str.replace’ | ’str.replace_all’;

9 uop_int_str: ’str.from_int’;

10 uop_regex:’re.comp’|’re.+’|’re.opt’;

11 bop_regex:’re.union’|’re.inter’|’re.++’|’re.diff’;

12 uop_str_regex: ’str.to_re’| ’re.range’;

13 binop_bool: ’and’|’or’|’xor’|’=’|’distinct’;

14 bop_str_bool: ’=’|’distinct’|’str.<=’

15 |’str.prefixof’|’str.suffixof’|’str.contains’;

16 str_term: str_const | var

17 | ’(’ top_str str_term str_term str_term ’)’

18 | ’(str.at’ str_term int_term ’)’

19 | ’(str.substr’ str_term int_term int_term ’)’

20 | ’(’ uop_int_str int_term ’)’;

21 int_term: int_const

22 | ’(str_to_int’ str_term ’)’

23 | ’(str.indexof’ str_term str_term int_term ’)’;

24 regex_term: regex_const

25 | ’(’ uop_regex regex_term ’)’

26 | ’(’ bop_regex regex_term regex_term ’)’

27 | ’(’ uop_str_regex str_term ’)’

28 | ’(re.*’ regex_const ’)’;

29 bool_term: ’(not’ bool_term ’)’

30 | ’(’ binop_bool bool_term bool_term ’)’

31 | ’(ite’ bool_term bool_term bool_term ’)’

32 | ’(’ bop_str_bool str_term str_term ’)’

33 | ’(’ ’str.is_digit’ str_term ’)’

34 | ’(’ ’str.in_re’ str_term regex_term ’)’;

35 decl_csts: ’(declare-const’ var type_str ’)’;

36 assert_stmt: ’(assert’ bool_term ’)’;

37 check_sat: ’(check-sat)’;

38 start: decl_csts assert_stmt check_sat;

(b) Strings

Figure 7.5: Derived grammars for the SMT theories (ctd).

134 grammar-based enumeration/et

the grammars covered all operators from the respective theories. 3 We
include two variables and two constants: e.g.,"true”, ”false" for Core, "0", "1"
for Ints, "0.0", "1.0" for Reals, "#x0000000000000000", "#x1111111111111111" for
Bitvectors and Arrays, "", "a" for Strings, and "(fp #b0 #b0{11} #b0{64})",
"(fp #b1 #b1{11} #b1{64})" for FP. The grammars describe SMT-LIB scripts
with a variable declaration block followed by a single assert and a check-
sat command. We emphasize that our approach is not restricted to these
grammars (see Figure 7.4 + 7.5). Richer grammars of SMT theories can be
devised by modifying existing or creating new grammars.

7.4 empirical evaluation

This section details our extensive evaluation with ET demonstrating the
practical effectiveness of grammar-based enumeration for testing SMT
solvers. We first evaluate ET through a bug-hunting campaign on the trunk
versions of the state-of-the-art SMT solvers Z3 and cvc5. Using ET, we
then investigate the evolution of all stable solvers releases over the last six
years. We finally explore ET’s potential as a monitoring tool for continuous
integration of solver commits.

result summary

• Many bugs in Z3 and cvc5: We found 102 bugs, 53 correctness and
49 performance bugs. Among these 76 were confirmed, and 32 were
fixed by the developers.

• Insightful evolution results: We observe significantly increased correct-
ness of Z3 and cvc5 within the last six years; For performance, recent
Z3 releases have regressed on short timeouts, while early cvc5 releases
regressed on long timeouts.

• Practicality for continuous integration: ET is practical for continuous
integration: it covers 99% of the cvc5 bugs (found in RQ2) in less
than two hours, and 80% of the Z3 bugs in less than four hours on a
commodity CI/CD pipeline.

Research Questions

We aim to answer the following four consecutive research questions:

3 https://smtlib.cs.uiowa.edu/theories.shtml

https://smtlib.cs.uiowa.edu/theories.shtml

7.4 empirical evaluation 135

rq1 How effective is ET at bug finding?

rq2 Can we use ET to quantify the correctness of SMT solvers?

rq3 Can we use ET to quantify the performance of SMT solvers?

rq4 How practical is ET for continous integration?

RQ2 and RQ3 are motivated by ET’s systematic testing and the small
scope hypothesis which states that most interesting behavior of software is
observable on small inputs. Quantifying solver evolution lets developers
observe long-term effects and helps users in making better choices for their
apps i.e. choosing a solver for a particular theory, judging the state of a
solver feature etc.

Evaluation Setup

For all experiments, we used a machine equipped with an AMD EPYC 9654

CPU with 96 cores and 64GB RAM running an Ubuntu 22.04.4 LTS (64-bit).
We disabled simultaneous multi-threading and frequency scaling for more
consistent performance. For RQ2-RQ4, we repeated the experiments two
times and averaged the results.

oracles We use the following two oracles for our evaluation with ET:

Otest is a differential oracle with daily-builds of the SMT solvers Z3 and
cvc5. The oracle calls the solvers in the following order: Z3 in default
mode, cvc5 in default modes, Z3’s new core, Z3 with further options,
cvc5 with further options, and cvc4-1.8 for catching longstanding
regressions in cvc5. The first terminating solver call serves as the
reference to all others. We use a timeout of 60s on all solver calls.

Oevol is a differential oracle with all SMT solvers Z3 and CVC4/cvc5

releases from November 2016 to March 2024 making 61 solvers in total.
The oracle calls all solvers and uses the latest cvc5 as the reference
for Z3 releases and the latest Z3 as a reference for all cvc5 and CVC4

releases. We use a timeout of 8s on all solver calls.

All configurations in both oracles were run with model validation and
unsat cores checks. Oracle Otest is used in RQ1 and oracle Oevol is used
in RQ2-RQ4. For the fuzzing campaign in RQ1, we extended the basic
grammars to up to five variables and two asserts.

136 grammar-based enumeration/et

Status Z3 cvc5 Total

Reported 38 64 102

Confirmed 15 61 76

Fixed 13 19 32

Duplicate 0 2 2

Won’t fix 4 1 5

(a)

Type Z3 cvc5 Total

Soundness 2 10 12

Invalid Model 7 10 17

Crash 1 19 20

Performance 5 22 27

(b)

#Options Z3 cvc5 Total

default 7 34 41

1 6 27 33

2 2 0 2

(c)

Figure 7.6: (a) Status of bugs found in Z3 and cvc5 with ET, (b) bug types among
the confirmed bug, (c) number of options supplied to Z3 and cvc5

among the confirmed bugs.

RQ1: How effective is ET at bug finding?

Using ET with oracle Otest, we extensively stress-tested the SMT solvers
Z3 and cvc5. We reported 102 bugs, out of which 76 were confirmed, 32
were fixed (see Figure 7.6a). The bug types are fairly evenly distributed:
12 are soundness bugs, 17 are invalid models, 20 are crashes, and 27 are
performance bugs (see Figure 7.6b). Of the confirmed bugs, most bugs
affect the solver’s default modes (41 out of 76), followed by single-option
configurations (33 out of 76) and two bugs affect two option configurations
(see Figure 7.6c).4 We also inspect the theory distribution which we analyze
for correctness bugs and performance bugs separately. Among the bugs
that we reported, there are 53 correctness and 49 performance bugs. Among
the correctness bugs, we observe most bugs in Reals (17 out of 53) followed
by Arrays (13 out of 53), followed by FP (10 out of 53), and Ints (6 out
of 53). Breaking it down further by solver, we observe that Z3 has most
correctness bugs in FP (5) followed by Reals (4) while cvc5 has most bugs
in Reals (13) and Arrays (11). Among the performance bugs, most bugs
occur in Strings (20 out of 49) followed by Ints (14 out of 49), and Bitvectors
(8 out of 49). Breaking it down further by solver, most performance bugs
in Z3 occur in Strings (10), followed by Ints (9) while most performance
bugs in cvc5 occur in Strings (10) and Reals (8). Despite being careful while
reporting bugs, there were also 2 duplicates and 5 won’t fix reports. The
duplicates were two bugs that were earlier findings by cvc5’s internal fuzzer
Murxla [30], the won’t fixes consist of four bugs in Z3’s new core considered
"too early" and an inconsistency of cvc5 and cvc4 with cvc4 being unsound.
As an intermediate conclusion, we observe that ET found almost twice as

4 Both two-option bugs are related to Z3’s new core tactic.default_tactic=smt sat.euf=true.

7.4 empirical evaluation 137

many bugs in cvc5 as compared to Z3. A partial explanation for this could
be the major overhauls from cvc4 to cvc5, extending previous reports of
performance regressions in cvc5 [53] to correctness. We moreover observe
that ET found most bugs in the default modes of the solvers demonstrating
ET’s effectiveness. Strikingly none of the concurrent fuzzing campaigns, unit
tests, or users have found the simple bugs that ET found. It is remarkable
that ET can find so many bugs given the extensive and continuous testing
of other fuzzers. To showcase the simplicity and diversity of ET’s findings
we detail multiple bug samples from our bug-hunting campaign with ET.

soundness bug in default cvc5 (figure 7 .7a) The formula real-
izes a conjunction of two equations. The first equation (= a 0) is satisfied
when variable a is zero. The second equation (= b (cos a)) is satisfied if b
equals the result of (cos a), which in turn has to be equal 1 to satisfy the
first equation. Setting a = 0 and b = 1 satisfies the whole formula. However,
cvc5 returns unsat on this formula, which is incorrect. The developers
promptly inspected and fixed this bug. The associated pull request was
labeled with "major" underpinning its criticality. The bug was undiscovered
for two and a half years propagating from cvc4-1.8 to cvc5-0.0.7.

soundness bug in z3’s new core (figure 7 .7b) The formula real-
izes the inequality -a > (1 mod -1) = 0. Clearly, a negative a would satisfy
the inequation, hence the formula is satisfiable. However, Z3’s new core
reports unsat for this formula.

soundness bug in cvc5’s string theory (figure 7 .7c) The for-
mula triggers a soundness bug in cvc5’s string theory. cvc5 with option
--strings-eager-len-re incorrectly returns unsat on this formula, although
it is satisfiable. The pull request fixing this bug got a "major" label.

soundness bug in z3 (figure 7 .7d) The formula triggers a sound-
ness bug in Z3’s array theory. Z3 with disabled bitvector equality axioms,
incorrectly returns sat on the formula, while cvc5 gives unsat, the correct
result. The issue was 1.5-year latent; it has existed since Z3 version 4.8.9.
We reported the issue and it was promptly fixed by Z3’s main developer.
The bug trigger is sizable; almost all other bugs had a smaller size.

performance bug in z3’s ints theory (figure 7 .7e). The formula
triggers a performance bug in Z3. The formula has a single integer variable

138 grammar-based enumeration/et

1 (declare-fun a () Real)
2 (declare-fun b () Real)
3 (assert (and (= a 0) (= b (cos a))))
4 (check-sat)

(a) Soundness bug in default cvc5: bug in
non-linear real-arithmetic.
https://github.com/cvc5/cvc5/issues/7948

1 (declare-const a Int)
2 (assert (> (- a) (mod 1 (- 1))))
3 (check-sat)

(b) Soundness bug in z3’s new core: bug
in non-linear real-arithmetic.
https://github.com/Z3Prover/z3/issues/6116

1 (declare-const a String)
2 (assert (str.in_re a (re.++ (re.opt
3 re.allchar) (re.diff (re.* re.none)
4 (str.to_re a)))))
5 (check-sat)

(c) Soundness bug in cvc5: Issue in eager
string solving component.

https://github.com/cvc5/cvc5/issues/8548

1 (declare-const a
2 (Array (_ BitVec 64) (_ BitVec 64)))
3 (declare-const b (_ BitVec 64))
4 (assert (= (store (store a b b)
5 (select a b)(select a b)) (store
6 (store a b #x1111111111111111)
7 #x1111111111111111
8 (bvudiv b #x1111111111111111))))
9 (check-sat)

(d) Soundness Bug in Z3: Z3 returns sat
on this unsatisfiable formula.

https://github.com/Z3Prover/z3/issues/2391

1 (declare-const a Int)
2 (assert (not (is_int (- (* a a)))))
3 (check-sat)

(e) Performance bug in default Z3: time-
out on a simple unsatisfiable formula.

https://github.com/Z3Prover/z3/issues/6800

1 (declare-const a Real)
2 (assert (>= (- a) (cos 1.0)))
3 (check-sat)

(f) Performance bug in default cvc5: time-
out on simple real formula.

https://github.com/cvc5/cvc5/issues/9873

1 (declare-const a String)
2 (assert (str.contains
3 (str.replace_all a "a" "") "a"))
4 (check-sat)

(g) Performance bug in cvc5: timeouts on
simple string formula.

https://github.com/cvc5/cvc5/issues/9875

1 (declare-const a (_ BitVec 64))
2 (assert (= a (bvurem (bvnot a) a)))
3 (check-sat)

(h) Performance bug in Z3 and cvc5:
timeouts on bitvector formula.

https://github.com/Z3Prover/z3/issues/6800

https://github.com/cvc5/cvc5/issues/9874

Figure 7.7: Selected correctness and performance bugs found by ET.

a, and the function is_int checks whether its argument is an integer or not.

https://github.com/cvc5/cvc5/issues/7948
https://github.com/Z3Prover/z3/issues/6116
https://github.com/cvc5/cvc5/issues/8548
https://github.com/Z3Prover/z3/issues/2391
https://github.com/Z3Prover/z3/issues/6800
https://github.com/cvc5/cvc5/issues/9873
https://github.com/cvc5/cvc5/issues/9875
https://github.com/Z3Prover/z3/issues/6800
https://github.com/cvc5/cvc5/issues/9874

7.4 empirical evaluation 139

Since this expression is integral, the formula should be unsat. However, the
z3 trunk version times out on this formula.

performance bug in cvc5’s real theory (figure 7 .7f) The
formula triggers a performance bug in cvc5’s Real theory. Although it is
sat, i.e. any integer greater than the negative of cos(1) would solve it.
Despite this, cvc5 times out on the formula.

performance bug in cvc5 string (figure 7 .7g) The simple string
formula is clearly unsatisfiable, as variable a cannot contain the string "a" if
all occurrences of "a" are replaced by the empty string using str.replace_all.
However, cvc5 times out on this formula. We reported the bug and it was
confirmed by a cvc5 developer.

performance bug in both z3 and cvc5 (figure 7 .7h) The for-
mula triggers a performance bug in both Z3 and cvc5. It is a simple bitvector
expression, on which both solvers time out. The issue was confirmed by
cvc5 and is still open in Z3.

Result #1: ET is highly effective at bug finding: we found 102 bugs in the trunk
versions of Z3 and cvc5 with most bugs in the default modes of the solvers.
Notably, ET found these bugs despite the extensive and continuous testing.

RQ2: Can we use ET to quantify the correctness of SMT solvers?

Having observed ET’s effectiveness at bug finding, a natural follow-up
question is whether ET’s systematic testing can be used to quantify the
correctness of SMT solvers. To approach this question, we ran ET with
oracle Oevol on all consecutive releases of Z3 and CVC4/cvc5 from the
last six years (see Figure 7.8). As a reference for validating the results of
the solvers, we used the latest Z3 version (z3-4.13.0) for all CVC4/cvc5

solvers and the latest CVC4/cvc5 version (cvc5-1.1.2) as a reference for all
Z3 versions. We then compare the number of bug triggers, i.e., failing tests,
per solver. For all solver calls, we chose a timeout of 8 seconds.

number of bug triggers per solver and theory We present the
results in a line plot (Figure 7.9) with two columns, one for each solver Z3

and CVC4/cvc5. The rows correspond to the different theories, e.g., Core,
Ints, Reals, etc. All rows share the horizontal axis with SMT solver releases

140 grammar-based enumeration/et

Solver date solver date solver date solver date

z3-4.5.0 Nov 2016 z3-4.8.11 Jul 2021 z3-4.8.17 May 2022 z3-4.12.2 May 2023

cvc4-1.5 Jul 2017 z3-4.8.12 Jul 2021 cvc5-0.0.7 May 2022 cvc5-1.0.6 Aug 2023

z3-4.6.0 Dec 2017 cvc5-0.0.2 Oct 2021 z3-4.9.1 Jun 2022 cvc5-1.0.7 Aug 2023

z3-4.7.1 May 2018 cvc5-0.0.3 Oct 2021 z3-4.9.0 Jun 2022 cvc5-1.0.8 Aug 2023

cvc4-1.6 Jun 2018 z3-4.8.13 Nov 2021 z3-4.10.0 Jun 2022 cvc5-1.0.9 Dec 2023

z3-4.8.1 Oct 2018 cvc5-0.0.4 Nov 2021 z3-4.10.1 Jun 2022 cvc5-1.1.0 Dec 2023

z3-4.8.3 Nov 2018 z3-4.8.14 Dec 2021 z3-4.10.2 Jun 2022 z3-4.12.3 Dec 2023

z3-4.8.4 Dec 2018 cvc5-0.0.5 Jan 2022 cvc5-1.0.1 Jul 2022 z3-4.12.4 Dec 2023

cvc4-1.7 Apr 2019 cvc5-0.0.6 Jan 2022 z3-4.11.0 Aug 2022 cvc5-1.1.1 Jan 2024

z3-4.8.5 Jun 2019 z3-4.8.15 Mar 2022 cvc5-1.0.2 Aug 2022 z3-4.12.5 Jan 2024

z3-4.8.6 Sep 2019 cvc5-0.0.8 Mar 2022 z3-4.11.2 Sep 2022 z3-4.12.6 Feb 2024

z3-4.8.7 Nov 2019 cvc5-0.0.10 Apr 2022 cvc5-1.0.3 Dec 2022 cvc5-1.1.2 Mar 2024

z3-4.8.8 May 2020 cvc5-0.0.11 Apr 2022 z3-4.12.0 Jan 2023 z3-4.13.0 Mar 2024

cvc4-1.8 Jun 2020 cvc5-0.0.12 Apr 2022 z3-4.12.1 Jan 2023

z3-4.8.9 Sep 2020 cvc5-1.0.0 Apr 2022 cvc5-1.0.4 Jan 2023

z3-4.8.10 Jan 2021 z3-4.8.16 Apr 2022 cvc5-1.0.5 Mar 2023

Figure 7.8: Z3 and CVC4/cvc5 versions from November 2016 to March 2024 used
in RQ2 and RQ3. In grey: solvers used for cross-checking in ET.

from the oldest to the newest (left to right). For each row, the vertical axis
denotes the bug trigger counts per theory and solver in a logarithmic scale.
Unsoundness bugs are depicted in red, invalid model bugs are depicted
in green, and crash bugs are depicted in blue. Additionally, we present
overview correctness results in a table on the next page (c.f. Figure 7.10).

z3 Considering the correctness results of Z3 (Figure 7.9 left), we observe
a striking decrease in bug triggers. In its oldest release 4.5.0, there were
bugs in 5 out of 8 theories including critical soundness bugs in Strings, and
FP. By contrast, in the most recent version 4.13.0, there are no bug triggers
at all, most importantly, no soundness bugs. Examining further, we observe
that Z3 became significantly more correct even in the theory of Strings. It
is now reliable since many releases. This is remarkable as the theory of
Strings was long considered unstable in both solvers. Another interesting
finding is the sudden decrease in bug triggers from version 4.8.7 to 4.8.8.
While in version 4.8.7, there are bug triggers in 5 out of 8 theories, in 4.8.8
there are no bugs. Besides 4.8.8 and 4.8.9, the other Z3 versions without
bugs are z3-4.8.11 until z3-4.8.17 and then z3-4.12.3 until 4.13.0.

7.4 empirical evaluation 141

Figure 7.9: Bug triggers per theory in all releases of Z3 (left) and CVC4/cvc5

(right) since November 2016.

cvc4/cvc5 For the correctness results of CVC4/cvc5, we likewise see a
striking decrease in bugs triggered by ET. Its oldest release (cvc4-1.5) has
bugs in 7 out of 8 theories including critical soundness bugs in Strings and
Bitvectors. On the other hand, the latest release (cvc5-1.1.2) only exhibits
invalid model bugs in Arrays and FP. Notably, there are soundness bug
triggers in Ints and RealInts beginning at cvc4-1.8 propagating to early
versions of cvc5. Similar to Z3, we also observe that bug triggers in cvc5’s
string theory have significantly decreased.

Result #2: Enabled by ET, we found that Z3 and CVC4/cvc5’s correctness has
significantly improved in (almost) all theories. Notably, the theory of Strings is
now stable in both solvers since many releases.

142 grammar-based enumeration/et

Solver unsound inv. model crash

z3-4.13.0 0.0 0.0 0.0
z3-4.12.3-6 0.0 0.0 0.0
z3-4.12.2 0.0 370.5 0.0
z3-4.12.1 0.0 347.5 0.0
z3-4.12.0 0.0 346.0 0.0
z3-4.11.2 0.0 319.5 0.0
z3-4.11.0 0.0 320.5 0.0
z3-4.10.2 0.0 321.0 0.0
z3-4.10.1 0.0 321.0 0.0
z3-4.10.0 0.0 321.0 0.0
z3-4.9.1 0.0 321.5 0.0
z3-4.9.0 0.0 322.0 0.0
z3-4.8.11-17 0.0 0.0 0.0
z3-4.8.10 0.0 20.0 0.0
z3-4.8.9 0.0 0.0 0.0
z3-4.8.8 0.0 0.0 0.0
z3-4.8.7 785.0 187854.0 1759.0
z3-4.8.6 785.0 406639.5 1759.0
z3-4.8.5 516.0 352492.0 1742.0
z3-4.8.4 516.0 196600.0 3982.0
z3-4.8.3 554.0 196974.0 3982.0
z3-4.8.1 3750.0 189173.0 3982.0
z3-4.7.1 4556.0 345172.0 0.0
z3-4.6.0 7134.0 360773.5 0.0
z3-4.5.0 6619.0 296773.0 0.0

Solver unsound inv. model crash

cvc5-1.1.2 0.0 13598.0 0.0
cvc5-1.1.1 0.0 13598.0 0.0
cvc5-1.1.0 0.0 13598.0 0.0
cvc5-1.0.9 0.0 13598.0 0.0
cvc5-1.0.8 0.0 13598.0 0.0
cvc5-1.0.7 0.0 13598.0 0.0
cvc5-1.0.6 0.0 13598.0 0.0
cvc5-1.0.5 0.0 24.0 0.0
cvc5-1.0.4 0.0 24.0 0.0
cvc5-1.0.3 0.0 8.0 0.0
cvc5-1.0.2 0.0 336.0 0.0
cvc5-1.0.1 0.0 336.0 0.0
cvc5-1.0.0 0.0 336.0 0.0
cvc5-0.0.12 0.0 336.0 0.0
cvc5-0.0.11 0.0 336.0 0.0
cvc5-0.0.10 0.0 336.0 0.0
cvc5-0.0.8 0.0 336.0 0.0
cvc5-0.0.7 330.0 336.0 0.0
cvc5-0.0.6 330.0 336.0 0.0
cvc5-0.0.5 330.0 336.0 0.0
cvc5-0.0.4 330.0 336.0 0.0
cvc5-0.0.3 330.0 336.0 0.0
cvc5-0.0.2 330.0 336.0 0.0
cvc4-1.8 2.0 3523.0 0.0
cvc4-1.7 0.0 0.0 28152.0
cvc4-1.6 0.0 133.0 26528.0
cvc4-1.5 46489.5 0.0 1027886.0

Figure 7.10: Bug triggers in Z3 (left) and CVC4/cvc5 releases (right). Shaded:
solvers in which ET found no bugs.

RQ3: Can we use ET to quantify the performance of SMT solvers?

Having noticed the improved correctness of the solvers, we next investigate
their performance. We first examine the number of solved formulas for
short and long timeouts. As a second step, we then examine the runtime
for jointly solved formulas and the throughput.

number of solved formulas We evaluate the number of solved
formulas for different timeouts ranging from the lowest (T=0.015625s) to
the highest (T=8s) in powers of two. For the lowest timeout of T=0.015625s,
we show a bar plot (see Figure 7.11). We have a column for each solver

7.4 empirical evaluation 143

Figure 7.11: Number of formulas for lowest timeout T = 0.015625s. White spaces
indicate unsolved formulas.

Z3 and CVC4/cvc5. The rows correspond to the different theories. All
columns share the horizontal axis on which the SMT solver releases are
listed from old to new (left to right). For each row, the vertical axis denotes
solved formulas. For the highest timeout T = 8s, we show a line plot (see
Figure 7.13). For a more complete set of plots, we refer to Appendix A.4.

lowest timeout t=0 .015625s Considering the results for Z3 (Fig-
ure 7.11 left), we see a significant decrease from earlier to later releases in
the number of solved formulas. This is especially true for Bitvectors, Arrays,
Strings, and FP. To a lesser extent also for Ints, Reals, and RealInts. The
most significant effect manifests from z3-4.8.10 to z3-4.8.11. Less significant
decreases occur from 4.11.2 to 4.12.0 and 4.12.1 to 4.12.2 respectively. There
is a significant increase in solved formulas for the theory of Strings from
version z3-4.8.8 to z3-4.8.10. This is caused by a large set of formerly rejected
formulas that were solved in z3-4.8.10. In z3-4.8.9, the version in between,

144 grammar-based enumeration/et

Figure 7.12: Results on larger formulas (4 KB and larger) to understand the
significant performance decline in Z3: before (z3-before) and after
increasing the hash table size (z3-after).

almost all the rejected formulas were turned into unknowns. Considering
the results for CVC4/cvc5 (Figure 7.11 right), we observe almost no differ-
ence in the number of solved formulas except in the theory of Strings where
many rejected formulas were solved from cvc4-1.7 to cvc4-1.8. Moreover, we
observe a slight decrease in FP from cvc4-1.8 to the cvc5 versions. Strikingly
in FP, all solvers of the CVC4/cvc5 family solve significantly fewer formulas
than early Z3 releases do.

understanding z3’s declining performance from z3-4 .8 .10 to

z3-4 .8 .11 We analyzed the performance decline in Z3 from version 4.8.10

to version 4.8.11, the strongest effect we observed. Using bisection, we could
pin it to the following root cause: In March 2021, a researcher observed
a performance regression caused by hash collisions in Z3. He filed the
following pull request:

989 public:
990 + ast_table() : chashtable({}, {}, 512 * 1024, 8 * 1024) {}
991 void push_erase(ast * n);
992 ast* pop_erase();
993 };

src/ast/ast.h (Z3 #5040)

This increases the start size of Z3’s hash table to 512 KB entries instead
of 8 KB, the previous default size. As the researcher showed performance
improvements for his application, Z3’s lead developer merged the pull

https://github.com/Z3Prover/z3/pull/5040

7.4 empirical evaluation 145

request into the trunk. Interestingly, another GitHub user reverted this
change in his public fork. Furthermore, there was a discussion about the
.NET API layer of Z3 related to this change. To understand its impact on
larger formulas, we use FEAT’s indexing feature. We extend ET in the
following way: (1) we set the benchmarked solvers to the commits before
and after the change, (2) we increase the variable count from two to five
in each grammar, (3) we search for a start index start_idx for FEAT s.t. the
corresponding formula is at least 4 KB, (4) we repeat 6 times:

a) Generate 5,000 formulas beginning at FEAT(i)

b) i := i · offset

where the offset is 1010 and i is initially set to start_idx which varies from
10275 to 101,700 depending on the grammar. Considering the results (Fig-
ure 7.12), we observe that the effect extends to larger formulas. In all of the
six iterations, the Z3 version after the change (z3-after) solves significantly
fewer formulas within 0.125 and 0.25 seconds. However, as we also observe,
the effect is roughly constant vanishing after 0.125 seconds.

highest timeout t=8s For the highest timeout, we focus on the perfor-
mance regressions which are the most interesting. Considering the results
for Z3 (see Figure 7.13 left), we observe that Z3 solves a constant number
of formulas since z3-4.8.10 and increases in earlier releases. Considering
the results for CVC4/cvc5, we see two interesting effects. For BV, there is a
decrease of over 5,000 formulas from cvc4-1.8 to cvc5-1.0.2, which is then
rebounded in cvc5-1.0.3. The second interesting effect happens in Arrays
from cvc5-1.0.5 to cvc5-1.0.6 with a drop of about 10,000 formulas.

cumulative runtime & throughput Besides the solved formulas,
we consider cumulative runtime on jointly solved formulas to study the
solvers’ evolution on a set of fixed benchmarks and throughput as a practical
metric for client software (see Figure 7.14). For the cumulative runtime
on jointly solved formulas, the vertical axis unit is seconds, and for the
throughput the unit is formulas per second. Let us first consider the runtime.
As a general trend, Z3’s runtime increases from 4.8.10 to 4.8.11 throughout
all theories peaking at z3-4.12.2. Looking at CVC4/cvc5, we observe near-
constant runtime in 7 out of 8 theories. The only exception is Bitvectors
where there is fluctuation, with cvc4-1.7 being the fastest, an increase in
runtime in early cvc5 releases, and a later decrease in cvc5-1.0.1.

146 grammar-based enumeration/et

Figure 7.13: Number of solved formulas for the highest timeout T=8s.

Considering the throughput, we again observe the effect from 4.8.10 to
4.8.11, i.e., a significant decrease in throughput. Besides this, we observe
a fluctuation in Bitvectors. Considering CVC4/cvc5, we observe mild de-
creases in Core, and more significant decreases in Ints, Reals, and Strings.
In Bitvectors and Arrays, cvc5-1.0.3 recovers from earlier drops.

Result #3: Recent Z3 releases solve fewer formulas in all theories at the lowest
timeout. At the highest timeout, early cvc5 versions solve fewer Bitvector than
CVC4 and there are recent regressions in the theory of Arrays. Recent versions of
both solvers have lower throughput than earlier releases.

RQ4: How practical is ET for continous integration?

With the encouraging results from RQ1-RQ3, we next explore the practicality
of ET for correctness and performance monitoring on commodity hardware.
The full experiment with 61 SMT solvers and all eight theories (i.e., 8

million formulas) takes about four days on a 96-core machine. However, for

7.4 empirical evaluation 147

Z3 CVC4/5

C
ore

Ints
R

eals
R

ealInts
B

itvectors
A

rrays
F

P
S

trings
z3

−4
.5

.0
z3

−4
.6

.0
z3

−4
.7

.1
z3

−4
.8

.1
z3

−4
.8

.3
z3

−4
.8

.4
z3

−4
.8

.5
z3

−4
.8

.6
z3

−4
.8

.7
z3

−4
.8

.8
z3

−4
.8

.9
z3

−4
.8

.1
0

z3
−4

.8
.1

1
z3

−4
.8

.1
2

z3
−4

.8
.1

3
z3

−4
.8

.1
4

z3
−4

.8
.1

5
z3

−4
.8

.1
6

z3
−4

.8
.1

7
z3

−4
.9

.0
z3

−4
.9

.1
z3

−4
.1

0.
0

z3
−4

.1
0.

1
z3

−4
.1

0.
2

z3
−4

.1
1.

0
z3

−4
.1

1.
2

z3
−4

.1
2.

0
z3

−4
.1

2.
1

z3
−4

.1
2.

2
z3

−4
.1

2.
3

z3
−4

.1
2.

4
z3

−4
.1

2.
5

z3
−4

.1
2.

6
z3

−4
.1

3.
0

cv
c4

−1
.5

cv
c4

−1
.6

cv
c4

−1
.7

cv
c4

−1
.8

cv
c5

−0
.0

.2
cv

c5
−0

.0
.3

cv
c5

−0
.0

.4
cv

c5
−0

.0
.5

cv
c5

−0
.0

.6
cv

c5
−0

.0
.7

cv
c5

−0
.0

.8
cv

c5
−0

.0
.1

0
cv

c5
−0

.0
.1

1
cv

c5
−0

.0
.1

2
cv

c5
−1

.0
.0

cv
c5

−1
.0

.1
cv

c5
−1

.0
.2

cv
c5

−1
.0

.3
cv

c5
−1

.0
.4

cv
c5

−1
.0

.5
cv

c5
−1

.0
.6

cv
c5

−1
.0

.7
cv

c5
−1

.0
.8

cv
c5

−1
.0

.9
cv

c5
−1

.1
.0

cv
c5

−1
.1

.1
cv

c5
−1

.1
.2

 0s

 5,000s

10,000s

15,000s

 0s

 5,000s

10,000s

 0s

 5,000s

10,000s

 0s

 5,000s

10,000s

 0s

20,000s

40,000s

60,000s

 0s

 5,000s

10,000s

15,000s

20,000s

0.00s
0.05s
0.10s
0.15s
0.20s

 0s

1,000s

2,000s

3,000s

solver

ru
nt

im
e

(s
)

Z3 CVC4/5

C
ore

Ints
R

eals
R

ealInts
B

itvectors
A

rrays
F

P
S

trings
z3

−4
.5

.0
z3

−4
.6

.0
z3

−4
.7

.1
z3

−4
.8

.1
z3

−4
.8

.3
z3

−4
.8

.4
z3

−4
.8

.5
z3

−4
.8

.6
z3

−4
.8

.7
z3

−4
.8

.8
z3

−4
.8

.9
z3

−4
.8

.1
0

z3
−4

.8
.1

1
z3

−4
.8

.1
2

z3
−4

.8
.1

3
z3

−4
.8

.1
4

z3
−4

.8
.1

5
z3

−4
.8

.1
6

z3
−4

.8
.1

7
z3

−4
.9

.0
z3

−4
.9

.1
z3

−4
.1

0.
0

z3
−4

.1
0.

1
z3

−4
.1

0.
2

z3
−4

.1
1.

0
z3

−4
.1

1.
2

z3
−4

.1
2.

0
z3

−4
.1

2.
1

z3
−4

.1
2.

2
z3

−4
.1

2.
3

z3
−4

.1
2.

4
z3

−4
.1

2.
5

z3
−4

.1
2.

6
z3

−4
.1

3.
0

cv
c4

−1
.5

cv
c4

−1
.6

cv
c4

−1
.7

cv
c4

−1
.8

cv
c5

−0
.0

.2
cv

c5
−0

.0
.3

cv
c5

−0
.0

.4
cv

c5
−0

.0
.5

cv
c5

−0
.0

.6
cv

c5
−0

.0
.7

cv
c5

−0
.0

.8
cv

c5
−0

.0
.1

0
cv

c5
−0

.0
.1

1
cv

c5
−0

.0
.1

2
cv

c5
−1

.0
.0

cv
c5

−1
.0

.1
cv

c5
−1

.0
.2

cv
c5

−1
.0

.3
cv

c5
−1

.0
.4

cv
c5

−1
.0

.5
cv

c5
−1

.0
.6

cv
c5

−1
.0

.7
cv

c5
−1

.0
.8

cv
c5

−1
.0

.9
cv

c5
−1

.1
.0

cv
c5

−1
.1

.1
cv

c5
−1

.1
.2

 0 tests/s

100 tests/s

200 tests/s

 0 tests/s
 50 tests/s
100 tests/s
150 tests/s
200 tests/s
250 tests/s

 0 tests/s
 50 tests/s
100 tests/s
150 tests/s
200 tests/s

 0 tests/s
 50 tests/s
100 tests/s
150 tests/s
200 tests/s

 0 tests/s

10 tests/s

20 tests/s

30 tests/s

 0 tests/s

 50 tests/s

100 tests/s

150 tests/s

 0 tests/s

 2 tests/s

 4 tests/s

 0 tests/s

 50 tests/s

100 tests/s

150 tests/s

solver

th
ro

ug
hp

ut

Figure 7.14: Top: Cumulative runtime on jointly solved formulas. Bottom:
Throughput in formulas per second.

148 grammar-based enumeration/et

monitoring, we would have a different setup. We only need at most two
SMT solvers, one to monitor and a reference solver. By caching the results
of the reference solver, we can reduce to a single solver. To realize such a
pipeline for Z3, we use the trunk for monitoring and the latest stable release
of cvc5 as the reference solver and vice-versa for cvc5. We assume a CI/CD
pipeline, e.g., by GitHub actions, with two cores and a time limit of six
hours per job. Investigating our data, we observe that 99% of bug triggers
(from RQ2) are within the first 120,000 formulas, and 80% occur within the
first 51,000 formulas. We further observe that 40% of the total time is spent
on the FP theory. By exploiting these empirical facts, we can construct a
pipeline by limiting the formula count to 51,000 (120,000) and excluding
the FP theory. Feasible realizations take three hours and 23 minutes for Z3

to cover 80%, and 1h 18 minutes for cvc5 to cover 99% of the bugs.

Result #4: ET is practical for continuous integration: for cvc5, we cover 99% of
the bugs in less two hours, for Z3 we cover 80% of the bugs in three and a half
hours on a commodity CI/CD pipeline.

7.5 discussion

We first discuss ET’s extensibility and scalability, then we discuss the
importance of small formulas based on the small scope hypothesis, and
finally we discuss ET’s limitations.

extensibility and scalability We evaluated ET on eight grammars
derived from the official, quantifier-free SMT-LIB theories. However, we
emphasize that ET is not restricted to these theories. A richer subset of SMT-
LIB can be designed by extending the existing grammars or by designing
new grammars. Additional operators and constants can be supported by
adding them as terminals to the grammar, compiling, and re-running ET.
Support for quantifiers, mixed theories, and incremental mode, can likewise
be realized by modifications to expression productions in the grammars.
As recent fuzzing campaigns reveal [2, 3, 20, 21], more than two-thirds
of the bugs include quantifiers, incremental mode, tactics, and other non-
standard features. The correctness results by ET can hence be thought of as
a lower bound on the overall solver correctness. Enhancing the scalability
of ET is possible by adding random sampling supported by the underlying

7.6 related work 149

FEAT library. Conceptually, testing with a generic SMT-LIB grammar is also
possible. However, such an approach suffers from combinatorics.

importance of small formulas ET is inspired by the small-scope
hypothesis stating that most bugs have small triggers. While the hypothesis
is known to hold for SMT solver correctness bugs, our findings suggest that
it also does for performance bugs. Moreover, we believe that correctness and
performance on small formulas are integral for establishing trust in SMT
solvers. Little shakes users’ trust in SMT solvers more than soundness bugs
with small triggers. Similarly, performance regressions on small formulas
undermine user’s confidence in their performance. ET helps protect against
these threats by detecting correctness and performance issues on small
formulas before users report larger triggers. Small triggers are especially
suited for triaging performance bugs for which reducers are often too
aggressive resulting in excessive timeouts.

limitations ET is a powerful tester with many benefits. However,
naturally, it also comes with its limitations. As ET has a differential oracle,
it inherits the limitations of differential testing. E.g., the differential oracle
could potentially miss soundness bugs if the reference and the tested
solver both return the same incorrect result. To mitigate this, we enable the
internal SMT solver’s model validators and unsatisfiable core checks for
satisfiable and unsatisfiable formulas, respectively. If a soundness bug is
encountered, either procedure would halt the solver. Another limitation
is that our results are subject to the variance of the machine. We hence
repeated the experiments two times in an isolated setup, and disabled
hyperthreading and frequency scaling.

7.6 related work

We first discuss related work on SMT solver robustness and performance
testing, then enumerative and bounded exhaustive testing, and finally how
our approach relates to benchmarking.

smt solver testing We found many correctness and performance
bugs in Z3 and cvc5. Hence, ET is related to the family of correctness and
performance testers for SMT solvers. Among the correctness testers, the first
work is by Brummayer and Biere [2009] dating back almost 15 years. Their
tool FuzzSMT found 16 solver defects in five older solvers and none in Z3.

150 grammar-based enumeration/et

Similar to ET, FuzzSMT is grammar-based and also on random generation.
A later work was BtorMBT [61], a testing tool for Boolector [62], an SMT
solver for the Bitvector theory. For almost a decade, soundness bugs in SMT
solvers were rarely encountered and SMT solvers solidified greatly over
the years, with Z3 and CVC4/cvc5 reaching industrial strength. Testing
research at the time seemed to first confirm this [56, 63]. However, later
STORM [32] and YinYang [1] found dozens of soundness bugs in Z3. Even
later, OpFuzz, TypeFuzz and Falcon [2, 3, 20, 21] found several hundred
bugs in Z3 and CVC4/cvc5. Besides the correctness fuzzers, StringFuzz [56]
is the first performance tester. StringFuzz found two performance bugs in
z3str3. Similar to ET, StringFuzz targets both correctness and performance
bugs and is based on grammar. A follow-up work is BanditFuzz [58]
which guides the testing by reinforcement learning. As a key difference
to all correctness and performance testers, ET’s testing is systematic and
enumerative rather than unsystematic and random.

enumerative testing and bounded exhaustive testing ET
is based on the functional enumerator FEAT [33], which belongs to the
family of property-based testers. Another similar tool is LeanCheck [114]
supporting richer properties than FEAT. ET is loosely related to the enu-
merative tester SmallCheck [115], and the random property-based tester
QuickCheck [116]. In the software engineering community, researchers pro-
posed Bounded Exhaustive Testing, through an approach for testing Galileo,
a dynamic fault tree analysis tool [117]. Similar to our work, their approach
enumerates inputs "to improve the assurance levels of complex software",
however different from our approach, they use the analyzer Alloy [118]
for input generation. More loosely related is skeletal program enumeration
(SPE) [82], an approach for validating compilers. Different from the enu-
merative testing, SPE does not fully enumerate the input space. Instead,
it uses existing inputs to generate holes and then fills those holes with
type-conforming terms. As ET generates tests from context-free grammars,
grammar-based black-box fuzzers [91, 102, 119, 120] are related. Unlike
grammar-based fuzzers, ET is size-bounded and enumerative rather than
depth-bounded and random.

benchmarking Our study on the evolution of SMT solvers is related to
benchmarking. The most prominent benchmarking initiative is SPEC [121],
which regularly evaluates hardware, software and systems on a large set
of real-world benchmarks. SPEC’s benchmarking includes CPU perfor-

7.6 related work 151

mance, cloud-computing, Java environments, e.g., SPEC Java. Another Java
benchmark is DaCapo [122], a diverse client-side benchmark suite with
large-scale applications such as ANTLR, hqldb, eclipse, and jython. A
different strand of benchmarking initiatives are solver competitions in au-
tomated reasoning and operations research [123, 124, 125]. Most closely
related is the SMT-COMP [126], the yearly SMT solver competition. In the
SMT-COMP competition, SMT solvers compete in several categories on the
SMT-LIB benchmark set plus additional benchmarks supplied by users of
SMT solvers. Most of the SMT-LIB benchmarks consist of applications that
are intentionally challenging for SMT solvers. As a key difference from
all three benchmarks SMT-LIB, SPEC, and DaCapo, which measure the
performance on real-world applications, ET’s formulas are enumerative
and not based on applications. Moreover, ET assesses the correctness of
SMT solvers besides performance, complementing SMT-COMP in ensuring
SMT solver’s correctness and performance.

8
C O N C L U S I O N A N D O U T L O O K

The overarching goal of this thesis was to solidify modern SMT solvers.
This chapter first provides a summary of contributions, i.e., the proposed
methodologies, approaches, and tools. Then we discuss the impact of these
contributions. We close with an outlook on future work.

8.1 summary

The first work Semantic Fusion put the existing trust in modern SMT solvers
to the test. Its results showed that SMT solvers are less stable than previously
believed. Semantic fusion is a generic methodology that fuses two test cases
into a new test case with a known oracle. It belongs to the family of
metamorphic testing techniques and can be employed with a single SMT
solver. Complementing Semantic Fusion, we devised Type-Aware Operator
Mutation, a testing technique with a differential oracle. Its key idea is to
mutate the operators within SMT formulas by other operators of the same
type. The technique is simple but unusually effective, finding 1,254 bugs in
Z3 and CVC4. Despite its effectiveness, Type-Aware Operator Mutation has
a key shortcoming: it cannot grow or shrink SMT formulas. To overcome
this, we devised an even more powerful technique: Generative Type-Aware
Mutation which can also generate expressions with fresh operators and then
replace existing expressions in the formula. The technique found another
322 bugs in Z3 and CVC4/cvc5 among them many critical soundness bugs.

While the first three works focus on correctness, for performance, we
devised Janus, an approach for finding incompleteness bugs in SMT solvers.
The key insight is realized in a technique called Weakening and Strengthening.
In a nutshell: to mutate SMT formulas with local implication rules. Janus is
effective: we found 31 incompleteness bugs, 26 have been confirmed, and
20 are already fixed. Janus’ diverse bugs uncovered functional, regression,
and performance bugs; several triggered discussions among the developers.

Over the years, our and other bug-hunting campaigns have led to several
hundreds of bug fixes in the SMT solvers Z3 and CVC4/cvc5. However,
despite these efforts, all existing testers were unsystematic, i.e. not yielding
any guarantees and missing bugs with small triggers. To tackle this, we

153

154 conclusion and outlook

devised ET, a tool implementing Grammar-based Enumeration for validat-
ing SMT solver correctness and performance. Despite the extensive and
continuous testing of the Z3 and cvc5, ET found bugs, out of which 76

were confirmed and 32 were fixed. Moreover, ET can help understand the
evolution of solvers. We derived eight grammars realizing all major SMT
theories including the booleans, integers, reals, realints, bit-vectors, arrays,
floating points, and strings. Using ET, we test all consecutive releases of
the SMT solvers Z3 and CVC4/cvc5 from the last six years. Our results sug-
gest improved correctness in recent versions of both solvers but decreased
performance in newer releases of Z3 on small timeouts (since z3-4.8.11) and
regressions in early cvc5 releases on larger timeouts.

8.2 impact

impact on smt solvers This thesis enabled one of the world’s largest
academic bug-hunting campaigns. Given this major effort, we ask the
following question: Did SMT solvers solidify through this work? We observe
that developers fixed a substantial amount of the reported bugs: 1,333 of all
bugs and 349 of all soundness bugs in Z3 and CVC4/cvc5. 1 These fixes not
only included soundness bugs that were undetected for years but also
prevented new soundness bugs from being introduced to solver releases.
One striking example is z3-4.8.8, where our bug hunting prevented more
than 23 soundness bugs alone from manifesting in the release.2 All other
releases of Z3 and CVC4/cvc5 since z3-4.8.7 and cvc5-1.0.2 likewise greatly
benefited from our bug reports. Empowered by ET (see Chapter 7), we
generalize the question. Did SMT solvers solidify through automated testing?
Besides the our findings, we now have to include fixes caused by other
testing campaigns [20, 21, 30, 32].3 Using ET’s results, we can partially
approach the question for quantifier-free SMT theories (see Figure 8.1).
The highlighted areas in the respective subplots show the releases subject
to testing campaigns. As we can see: since the beginning of the fuzzing
campaigns, the bug counts have decreased significantly and so have the
number of theories with bugs. Moreover, beginning z3-4.8.8 and cvc5-0.0.8
no soundness bugs were found by ET’s systematic enumeration. We hence
argue that this thesis has significantly solidified SMT solvers.

1 Many of the unfixed bugs are still pending and might also be fixed shortly.
2 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8
3 At the time of writing, our work amounts to more than half the bug fixes in Z3 and CVC4/cvc5.

8.2 impact 155

0 0 0
10

1,000

10,000

100,000

1,000,000

z3
−4

.5
.0

z3
−4

.6
.0

z3
−4

.7
.1

z3
−4

.8
.1

z3
−4

.8
.3

z3
−4

.8
.4

z3
−4

.8
.5

z3
−4

.8
.6

z3
−4

.8
.7

z3
−4

.8
.8

z3
−4

.8
.9

z3
−4

.8
.1

0

z3
−4

.8
.1

1

z3
−4

.8
.1

2

z3
−4

.8
.1

3

z3
−4

.8
.1

4

z3
−4

.8
.1

5

z3
−4

.8
.1

6

z3
−4

.8
.1

7

z3
−4

.9
.0

z3
−4

.9
.1

z3
−4

.1
0.

0

z3
−4

.1
0.

1

z3
−4

.1
0.

2

z3
−4

.1
1.

0

z3
−4

.1
1.

2

z3
−4

.1
2.

0

z3
−4

.1
2.

1

z3
−4

.1
2.

2

z3
−4

.1
2.

3

z3
−4

.1
2.

4

z3
−4

.1
2.

5

z3
−4

.1
2.

6

z3
−4

.1
3.

0

B

ug
 tr

ig
ge

rs

Arrays

Bitvectors

Core

FP

Ints

RealInts

Reals

Strings

10

100

1,000

10,000

100,000

1,000,000

cv
c4

−1
.5

cv
c4

−1
.6

cv
c4

−1
.7

cv
c4

−1
.8

cv
c5

−0
.0

.2

cv
c5

−0
.0

.3

cv
c5

−0
.0

.4

cv
c5

−0
.0

.5

cv
c5

−0
.0

.6

cv
c5

−0
.0

.7

cv
c5

−0
.0

.8

cv
c5

−0
.0

.1
0

cv
c5

−0
.0

.1
1

cv
c5

−0
.0

.1
2

cv
c5

−1
.0

.0

cv
c5

−1
.0

.1

cv
c5

−1
.0

.2

cv
c5

−1
.0

.3

cv
c5

−1
.0

.4

cv
c5

−1
.0

.5

cv
c5

−1
.0

.6

cv
c5

−1
.0

.7

cv
c5

−1
.0

.8

cv
c5

−1
.0

.9

cv
c5

−1
.1

.0

cv
c5

−1
.1

.1

cv
c5

−1
.1

.2

Solver

B

ug
 tr

ig
ge

rs

Figure 8.1: Bug triggers in releases of Z3 (top) and CVC4/cvc5 (bottom). The
highlighted area indicates solver releases subject to testing campaigns.
To the right of the dashed line, releases exhibit no soundness bugs.

further impact Besides the bug-hunting results, this thesis established
a new research (sub)-area with follow-up works within and outside the
SMT community. Works divide roughly into SMT testers [19, 20, 21, 22, 23,
24, 25, 30], testers for other formal methods tools [26, 27, 28] and general
software testing works [19, 29]. Our tools YinYang and Janus, are already
open-sourced. ET will be open-sourced soon. YinYang and Janus have a
combined 190 stars and 22 forks on GitHub. Researchers and practitioners
can benefit from our tools, i.e. making their SMT solvers robust or judging
the robustness of a given SMT solver. Our research also has significant
recognition in industry. E.g., our tool YinYang was awarded a Google Open-
Source Peer bonus in 2021 and an Amazon Research Award in 2022. During
my internship at AWS in 2023, I applied ET to the string solver nfa2sat
which is used for Zelkova in production. ET is part of the continuous
integration tests for nfa2sat [31].

156 conclusion and outlook

8.3 outlook

Our research line has opened up an exciting body of follow-up work. We
outline three strands of future work to further improve the quality of SMT
solvers and generalize our testing techniques.

directed testing of smt solver & proof modes Because of the
complexity of Z3 and CVC4/cvc5’s code (looping, and recursion), coverage-
guided testing of the code of the SMT solvers Z3 and CVC4/cvc5 has not
demonstrated to be effective. 4 However, instrumenting only parts of the
code, could make coverage-guided testing effective. One idea is the focused
testing of a single component such as the rewriter or proof mode. As bugs
in rewriters have been the main source for soundness issues in SMT solvers,
this could further solidify the solvers.

automated bug fixing & debloating of smt solvers Automated
fixing of SMT solver bugs could complement automated bug-hunting. The
high-level idea would be to use machine-learning-based techniques from
program repair such as getafix [127]. We then aim to couple them with
fuzzing techniques for SMT solvers as oracles to sort out the various fixes.
Another approach to improve SMT solvers is by debloating code bases of
Z3 and cvc5 through data-driven analysis. Using the SMT benchmarks, it
could be possible to identify rarely-used optimizing components in the
solvers (e.g., rewriters). The goal is then to reduce the solvers to the bare
minimum while maintaining performance.

generalization of the testing techniques to other domains

Another strand of future work could be the generalization of our testing
techniques to other domains. The most direct candidate for generalization
is the grammar-based enumerator ET. We plan to devise grammars for
JavaScript, Golang, and the Solidity languages. Large-scale generalization
of Generative Type-Aware Mutation could be possible by letting LLMs label
the types of input seeds and then mutating the typed seeds. A differential
oracle between the latest release of software and the trunk could help detect
many bugs. An interesting challenge would be the extraction of the bugs
among all the inconsistencies between the latest release and trunk. Semantic
Fusion is suitable for domains where differential testing is inapplicable.

4 We tried enhancing OpFuzz with an Superion [89] to benefit from coverage guidance.

8.3 outlook 157

Besides SMT solvers, it has been applied to validate multimedia content
moderation software [128].

More broadly, this thesis enables Formal Method Engineering, a new engi-
neering discipline to make formal methods more reliable, performant, and
usable. 5 As we demonstrate for SMT solvers, automated software testing
is a powerful tool for ensuring reliability and performance. This yields a
positive perspective on ensuring the reliability and performance of formal
methods tools beyond SMT solvers.

5 The idea of a dedicated engineering discipline for formal methods was brought up by Peter
Müller in a joint discussion.

B I B L I O G R A P H Y

[1] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “Validating
SMT Solvers via Semantic Fusion”. In: PLDI ’20. 2020, 718.

[2] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “On the Un-
usal Effectiveness of Type-Aware Operator Mutation”. In: OOPSLA
’20. 2020, 1.

[3] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong
Su. “Generative Type-Aware Mutation for Testing SMT Solvers”. In:
OOPSLA ’21. 2021, 1.

[4] Mauro Bringolf, Dominik Winterer, and Zhendong Su. “Finding and
Understanding Incompleteness Bugs in SMT Solvers”. In: ASE ’22.
2022, 1.

[5] Dominik Winterer. “Grammar-based Enumeration of SMT Solvers
for Correctness and Performance”. In: OOPSLA ’24. 2024.

[6] Vince Szabo, Dominik Winterer, and Zhendong Su. “Compilation
Quotient (CQ): A Metric for the Compilation Hardness of Program-
ming Languages”. In: arXiv. 2024.

[7] National Institute of Standards and Technology (NIST). Back to the
Building Blocks: A Path Toward Secure and Measurable Software. Tech.
rep. U.S. Department of Commerce, 2024.

[8] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed
automated random testing”. In: PLDI ’05. 2005, 213.

[9] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs”. In: OSDI ’08. 2008, 209.

[10] Armando Solar-Lezama. “Program Synthesis by Sketching”. PhD
thesis. University of California at Berkeley, 2008.

[11] Emina Torlak and Rastislav Bodik. “A lightweight symbolic virtual
machine for solver-aided host languages”. In: PLDI ’14. 2014, 530.

[12] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theo-
rem Prover for Program Checking”. In: JACM (2005), 365.

159

160 bibliography

[13] Rob DeLine and Rustan Leino. BoogiePL: A Typed Procedural Language
for Checking Object-Oriented Programs. Tech. rep. 2005.

[14] Daniel Kroening, Peter Schrammel, and Michael Tautschnig. “CBMC:
The C Bounded Model Checker”. In: arXiv. 2023.

[15] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel
J. Kochenderfer. “Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks”. In: CAV ’17. 2017, 97.

[16] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge,
Andrew Gacek, Kasper Søe Luckow, Neha Rungta, Oksana Tkachuk,
and Carsten Varming. “Semantic-based Automated Reasoning for
AWS Access Policies using SMT”. In: FMCAD ’18. 2018, 1.

[17] AdaCore. SPARK. URL: https://github.com/AdaCore/spark2014
(last visited on 2024-07-08).

[18] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie
Kaufman. “Automated Analysis and Debugging of Network Con-
nectivity Policies”. In: MSR-TR-2014-102 (2014).

[19] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel,
and Lingming Zhang. “Fuzz4all: Universal fuzzing with large lan-
guage models”. In: ICSE ’24. 2024, 1.

[20] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin
Wu, and Charles Zhang. “Fuzzing SMT Solvers via Two-Dimensional
Input Space Exploration”. In: ISSTA ’21. 2021, 322.

[21] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin
Wu, and Charles Zhang. “Skeletal Approximation Enumeration for
SMT Solver Testing”. In: FSE ’21. 2021, 1141.

[22] Hichem Rami Ait El Hara, Guillaume Bury, and Steven de Oliveira.
“Alt-Ergo-Fuzz: A fuzzer for the Alt-Ergo SMT solver”. In: 33èmes
Journées Francophones des Langages Applicatifs. 2022, 235.

[23] Anzhela Sukhanova and Valentyn Sobol. “HornFuzz: Fuzzing CHC
solvers”. In: EASE ’23. 2023, 83.

[24] Maolin Sun, Yibiao Yang, Ming Wen, Yongcong Wang, Yuming Zhou,
and Hai Jin. “Validating SMT Solvers via Skeleton Enumeration
Empowered by Historical Bug-Triggering Inputs”. In: ICSE ’23. 2023,
69.

https://github.com/AdaCore/spark2014

bibliography 161

[25] Jongwook Kim, Sunbeom So, and Hakjoo Oh. “Diver: Oracle-Guided
SMT Solver Testing with Unrestricted Random Mutations”. In: ICSE
’23. 2023, 2224.

[26] Muhammad Numair Mansur, Maria Christakis, and Valentin
Wüstholz. “Metamorphic testing of Datalog engines”. In: FSE
’21. 2021, 639.

[27] Muhammad Numair Mansur, Valentin Wüstholz, and Maria Chris-
takis. “Dependency-Aware Metamorphic Testing of Datalog En-
gines”. In: ISSTA ’23. 2023, 236.

[28] Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić,
Neha Rungta, and Emina Torlak. “Testing Dafny (experience pa-
per)”. In: ISSTA ’22. 2022, 556.

[29] Andrei Lascu, Alastair F. Donaldson, Tobias Grosser, and Torsten
Hoefler. “Metamorphic Fuzzing of C++ Libraries”. In: ICST ’22. 2022,
35.

[30] Aina Niemetz, Mathias Preiner, and Clark Barrett. “Murxla: A Mod-
ular and Highly Extensible API Fuzzer for SMT Solvers”. In: CAV
’22. 2022, 92.

[31] Kevin Lotz, Amit Goel, Bruno Dutertre, Benjamin Kiesl-Reiter,
Soonho Kong, Rupak Majumdar, and Dirk Nowotka. “Solving string
constraints using SAT”. In: CAV ’23. 2023.

[32] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz,
and Fuyuan Zhang. “Detecting Critical Bugs in SMT Solvers Using
Blackbox Mutational Fuzzing”. In: FSE ’20. 2020, 701.

[33] Jonas Duregard, Patrick Jansson, and Meng Wang. “FEAT: Functional
Enumeration of Algebraic Types”. In: Haskell ’12. 2012, 61.

[34] D. Jackson and C.A. Damon. “Elements of style: analyzing a software
design feature with a counterexample detector”. In: IEEE Transactions
on Software Engineering (1996), 484.

[35] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko
Marinov. Evaluating the “Small Scope Hypothesis”. Tech. rep. 2002.

[36] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algo-
rithmic Point of View. 2nd ed. Springer Publishing Company, Incor-
porated, 2008.

[37] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating
Decision Procedures”. In: TOPLAS (1979), 245.

162 bibliography

[38] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: TACAS ’08. 2008, 337.

[39] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. “CVC4”. In: CAV ’11. 2011, 171.

[40] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, An-
drew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. “cvc5: A
Versatile and Industrial-Strength SMT Solver”. In: TACAS ’22. 2022,
415.

[41] Bruno Dutertre and Leonardo De Moura. The Yices SMT Solver. Tech.
rep. 2006.

[42] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and
Roberto Sebastiani. “The MathSAT5 SMT Solver”. In: TACAS ’13.
2013, 93.

[43] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei
Tsitovich. “The OpenSMT Solver”. In: TACAS. 2010, 150.

[44] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. “SMTInterpol:
an interpolating SMT solver”. In: SPIN’12. 2012, 248.

[45] Sylvain Conchon, Mohamed Iguernlala, David Mentré, Guillaume
Melquiond, and Virginie Wiels. Alt-Ergo: The SMT Solver. URL:
https://ocamlpro.github.io/alt- ergo (last visited on 2024-
07-08).

[46] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-
Vectors and Arrays”. In: CAV ’07. 2007, 519.

[47] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB).

[48] Cristian Cadar and Alastair Donaldson. “Analysing the Program
Analyser”. In: ICSE ’16. 2016, 765.

[49] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller.
“MaxSMT-Based Type Inference for Python 3”. In: CAV ’18. 2018, 12.

[50] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paul-
son. “Extending Sledgehammer with SMT Solvers”. In: Automated
Deduction – CADE-23. 2011, 116.

https://ocamlpro.github.io/alt-ergo

bibliography 163

[51] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy
Katz, Andrew Reynolds, and Clark Barrett. “SMTCoq: A Plug-In for
Integrating SMT Solvers into Coq”. In: CAV ’17. 2017, 126.

[52] Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE:
Whitebox Fuzzing for Security Testing: SAGE Has Had a Remarkable
Impact at Microsoft.” In: Queue (2012), 20.

[53] Neha Rungta. “A Billion SMT Queries a Day (Invited Paper)”. In:
CAV ’22. 2022, 3.

[54] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. “Test-case reduction for C compiler bugs”. In:
PLDI ’12. 2012, 335.

[55] Gereon Kremer. pyDelta: delta debugging for SMT-LIB. URL: https:
//github.com/nafur/pydelta (last visited on 2024-07-08).

[56] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz
Kabir, and Vijay Ganesh. “StringFuzz: A Fuzzer for String Solvers”.
In: CAV ’18. 2018, 45.

[57] Using the GNU Compiler Collection (GCC): Gcov. URL: https://gcc.
gnu.org/onlinedocs/gcc/Gcov.html (last visited on 2024-07-08).

[58] Joseph Scott, Federico Mora, and Vijay Ganesh. “BanditFuzz:
Fuzzing SMT Solvers with Reinforcement Learning”. In: CAV
’20. 2020, 68.

[59] Celeb Stanford, Margus Veanes, and Nikolaj Bjørner. “Symbolic
Boolean Derivatives for Efficiently Solving Extended Regular Ex-
pression Constraints”. In: PLDI ’21. 2021, 620.

[60] Robert Brummayer and Armin Biere. “Fuzzing and delta-debugging
SMT solvers”. In: SMT ’09. 2009, 1.

[61] Aina Niemetz, Mathias Preiner, and Armin Biere. “Model-based API
testing for SMT solvers”. In: SMT ’17. 2017, 10.

[62] Robert Brummayer and Armin Biere. “Boolector: An Efficient SMT
Solver for Bit-Vectors and Arrays”. In: TACAS ’09. 2009, 174.

[63] Alexandra Bugariu and Peter Müller. “Automatically Testing String
Solvers”. In: ICSE ’20. 2020, 1459.

[64] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu,
and Zhendong Su. “Finding and understanding bugs in software
model checkers”. In: FSE ’19. 2019, 763.

https://github.com/nafur/pydelta
https://github.com/nafur/pydelta
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

164 bibliography

[65] Christian Klinger, Maria Christakis, and Valentin Wüstholz. “Differ-
entially testing soundness and precision of program analyzers”. In:
ISSTA ’19. 2019, 239.

[66] Timotej Kapus and Cristian Cadar. “Automatic testing of symbolic
execution engines via program generation and differential testing”.
In: ASE ’17. 2017, 590.

[67] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. “Effective
dynamic detection of alias analysis errors”. In: FSE ’13. 2013, 279.

[68] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Pe-
ter Müller. “Automatically testing implementations of numerical
abstract domains”. In: ASE ’18. 2018, 768.

[69] Lina Qiu, Yingying Wang, and Julia Rubin. “Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe”. In: ISSTA ’18. 2018,
176.

[70] Felix Pauck, Eric Bodden, and Heike Wehrheim. “Do android taint
analysis tools keep their promises?” In: FSE ’18. 2018, 331.

[71] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic
testing: a new approach for generating next test cases. Tech. rep. 1998.

[72] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler validation
via equivalence modulo inputs”. In: PLDI ’14. 2014, 216.

[73] Vu Le, Chengnian Sun, and Zhendong Su. “Finding deep compiler
bugs via guided stochastic program mutation”. In: OOPSLA ’15.
2015, 386.

[74] Chengnian Sun, Vu Le, and Zhendong Su. “Finding compiler bugs
via live code mutation”. In: OOPSLA ’16. 2016, 849.

[75] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F
Donaldson. “Many-core compiler fuzzing”. In: PLDI ’15. 2015, 65.

[76] Alastair F Donaldson, Hugues Evrard, Andrei Lascu, and Paul
Thomson. “Automated testing of graphics shader compilers”. In:
OOPSLA ’17. 2017, 93.

[77] Murphy Berzish, Yunhui Zheng, and Vijay Ganesh. “Z3str3: A String
Solver with Theory-aware Branching”. In: FMCAD ’17. 2017, 55.

[78] Z3. Z3 Regression Test Suite. URL: https://github.com/Z3Prover/
z3test (last visited on 2024-07-04).

[79] CVC4. CVC4 Regression Test Suite. URL: https://github.com/CVC4/
CVC4/tree/master/test/regress (last visited on 2024-04-29).

https://github.com/Z3Prover/z3test
https://github.com/Z3Prover/z3test
https://github.com/CVC4/CVC4/tree/master/test/regress
https://github.com/CVC4/CVC4/tree/master/test/regress

bibliography 165

[80] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Clark W. Bar-
rett, and Cesare Tinelli. “On Counterexample Guided Quantifier
Instantiation for Synthesis in CVC4”. In: CAV ’15. 2015.

[81] Aina Niemetz and Armin Biere. “ddSMT: A Delta Debugger for the
SMT-LIB v2 Format”. In: SMT ’13. 2013, 36.

[82] Qirun Zhang, Chengnian Sun, and Zhendong Su. “Skeletal program
enumeration for rigorous compiler testing”. In: PLDI ’17. 2017, 347.

[83] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce.
“Coverage guided, property based testing”. In: OOPSLA ’19. 2019, 1.

[84] Sang Kil Cha, Maverick Woo, and David Brumley. “Program-
adaptive mutational fuzzing”. In: SP ’15. 2015, 725.

[85] Michal Zalewski. american fuzzy lop.

[86] Caroline Lemieux and Koushik Sen. “Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage”. In: ASE ’18.
2018, 475.

[87] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei
Lin, Yang Liu, and Alwen Tiu. “Steelix: Program-state based binary
fuzzing”. In: FSE ’17. 2017, 627.

[88] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexan-
dru Razvan Caciulescu, and Abhik Roychoudhury. “Smart greybox
fuzzing”. In: TSE ’19, 1980.

[89] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. “Superion:
grammar-aware greybox fuzzing”. In: ICSE ’19. 2019, 724.

[90] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. “NAUTILUS:
Fishing for Deep Bugs with Grammars”. In: NDSS ’19. 2019, 337.

[91] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and
Understanding Bugs in C Compilers”. In: PLDI ’11. 2011, 283.

[92] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh
Leather. “Compiler fuzzing through deep learning”. In: ISSTA ’18.
2018, 95.

[93] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang.
“APOLLO: Automatic detection and diagnosis of performance re-
gressions in database systems”. In: VLDB ’19. 2019, 57.

[94] Andreas Seltenreich. SQLSmith. https : / / github . com / anse1 /

sqlsmith (last visited on 2024-07-04).

https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith

166 bibliography

[95] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. “Generating
targeted queries for database testing”. In: SIGMOD ’08. 2008, 499.

[96] Manuel Rigger and Zhendong Su. “Detecting optimization bugs in
database engines via non-optimizing reference Engine Construction”.
In: OOPSLA ’20. 2020, 1140.

[97] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. “Difuze:
Interface aware fuzzing for kernel drivers”. In: CCS ’17. 2017, 2123.

[98] HyungSeok Han and Sang Kil Cha. “Imf: Inferred model-based
fuzzer”. In: CCS ’17. 2017, 2345.

[99] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. “kAFL: Hardware-assisted feedback
fuzzing for OS kernels”. In: USENIX Security ’17. 2017, 167.

[100] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio
Tramontana, Emily Kowalczyk, and Atif M. Memon. “Exploiting
the Saturation Effect in Automatic Random Testing of Android
Applications”. In: MOBILESoft ’15. 2015, 33.

[101] Dominik Winterer, Chengyu Zhang, and Zhendong Su. yinyang: a
fuzzer for SMT solvers. URL: https://github.com/testsmt/yinyang
(last visited on 2024-07-04).

[102] K. V. Hanford. “Automatic generation of test cases”. In: IBM Systems
Journal 9.4 (1970), 242.

[103] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Random
Testing for C and C++ Compilers with YARPGen”. In: OOPSLA ’20.
2020, 1.

[104] Manuel Rigger and Zhendong Su. “Testing Database Engines via
Pivoted Query Synthesis”. In: OSDI ’20. 2020, 667.

[105] Patrice Godefroid, Hila Peleg, and Rishabh Singh. “Learn Fuzz:
Machine learning for input fuzzing”. In: ASE ’17. 2017, 50.

[106] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. “Provably correct peephole optimizations with alive”. In:
PLDI ’15. 2015, 22.

[107] Levent Erkok. SBV: SMT Based Verification in Haskell. URL: https:
//github.com/LeventErkok/sbv (last visited on 2024-07-08).

https://github.com/testsmt/yinyang
https://github.com/LeventErkok/sbv
https://github.com/LeventErkok/sbv

bibliography 167

[108] Zvonimir Rakamaric and Michael Emmi. “SMACK: Decoupling
Source Language Details from Verifier Implementations”. In: CAV
’14. 2014, 106.

[109] Rustan Leino and Clément Pit-Claudel. “Trigger Selection Strategies
to Stabilize Program Verifiers”. In: CAV ’16. 2016.

[110] Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule,
and Bryan Parno. “Mariposa: Measuring SMT Instability in Auto-
mated Program Verification”. In: FMCAD ’23. 2023, 178.

[111] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman
Jana. “SlowFuzz: Automated Domain-Independent Detection of Al-
gorithmic Complexity Vulnerabilities”. In: CCS ’17. 2017, 2155.

[112] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song.
“PerfFuzz: Automatically Generating Pathological Inputs”. In: ISSTA
’18. 2018, 254.

[113] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. “Au-
tomating Performance Bottleneck Detection Using Search-Based
Application Profiling”. In: ISSTA ’15. 2015, 270.

[114] Rudy Matela Braquehais. “Tools for Discovery, Refinement and
Generalization of Functional Properties by Enumerative Testing”.
PhD thesis. University of York, 2017.

[115] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. “Small-
check and Lazy Smallcheck: Automatic Exhaustive Testing for Small
Values”. In: Haskell ’08. 2008, 37.

[116] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs”. In: ICFP ’00. 2000, 268.

[117] Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and
Daniel Jackson. “Software Assurance by Bounded Exhaustive Test-
ing”. In: ISSTA ’04. 2004, 133.

[118] Daniel Jackson. “Alloy: a lightweight object modelling notation”. In:
ACM Trans. Softw. Eng. Methodol. (2002).

[119] W.H. Burkhardt. “Generating test programs from syntax”. In: Com-
puting. 1967, 53.

[120] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with
Code Fragments”. In: USENIX Security ’12. 2012, 38.

[121] SPEC. SPEC’s Benchmarks and Tools. https : / / www . spec . org /

benchmarks.html (last visited on 2024-07-04).

https://www.spec.org/benchmarks.html
https://www.spec.org/benchmarks.html

168 bibliography

[122] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M.
Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
“The DaCapo Benchmarks: Java Benchmarking Development and
Analysis”. In: OOPSLA ’06. 2006, 169.

[123] SAT Competition. The International SAT Competition Web Page. URL:
https://github.com/AdaCore/spark2014 (last visited on 2024-07-
08).

[124] Geoff Sutcliffe. “The CADE ATP System Competition — CASC”. In:
AI Magazine (2016), 99.

[125] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achter-
berg, Michael Bastubbe, Timo Berthold, Philipp M. Christophel, Kati
Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D. Mit-
telmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and
Yuji Shinano. “MIPLIB 2017: Data-Driven Compilation of the 6th
Mixed-Integer Programming Library”. In: Mathematical Programming
Computation (2021).

[126] Clark Barrett, Leonardo de Moura, and Aaron Stump. “SMT-COMP:
Satisfiability Modulo Theories Competition”. In: CAV ’05. 2005, 20.

[127] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
“Getafix: learning to fix bugs automatically”. In: OOPSLA ’19. 2019,
1.

[128] Wenxuan Wang, Jingyuan Huang, Chang Chen, Jiazhen Gu, Jian-
ping Zhang, Weibin Wu, Pinjia He, and Michael Lyu. “Validating
Multimedia Content Moderation Software via Semantic Fusion”. In:
ISSTA ’23. 2023, 576.

https://github.com/AdaCore/spark2014

bibliography 169

A
A P P E N D I X

a.1 semantic fusion

Proposition 3.2.1 (Mixed fusion). Let φ1 be a satisfiable and φ2 be an un-
satisfiable formula with vars(φ1) ∩ vars(φ2) = ∅. Let further x ∈ vars(φ1),
y ∈ vars(φ2) be variables. Then:

φmixed-sat = φ1[rx(y, z)/x] ∨ φ2[ry(x, z)/y] is satisfiable; and

φmixed-unsat = φ1[rx(x, z)/x] ∧ φ2[ry(x, z)/y] ∧ z = g(x, y) is unsatisfiable.

Proof. For the satisfiability of φmixed-sat, we consider the proof for SAT fusion
(Proposition 3.2.1) where we construct a model for φsat by structural induc-
tion. As an intermediate step, this proof concludes that φ1[rx(y, z)/x] is sat-
isfiable for a satisfiable φ1. This also holds for φmixed-sat. Since φ1[rx(y, z)/x]
is satisfiable, so is φmixed-sat since φ2[ry(x, z)/y] is connected via disjunction
and may be unsatisfiable but φmixed-sat is still satisfiable. For the unsatisfi-
ability of φmixed-unsat, we apply the following reasoning. Since φ1 is satis-
fiable, φ1[rx(y, z)/x] is satisfiable, as proved above. Hence, for φmixed-unsat
to contradict the assumption (that is to be satisfiable), φ2[ry(x, z)/y] ∧ z =
g(x, y) must be satisfiable. However, then we apply the same reason-
ing as in the Proof of Proposition 3.2.2 and show by contradiction that
φ2[ry(x, z)/y] ∧ z = g(x, y) is unsatisfiable for an unsatisfiable φ2. Conse-
quently, φmixed-unsat is unsatisfiable as φ2[ry(x, z)/y] ∧ z = g(x, y) is.

171

172 bibliography

a.2 type-aware operator mutation

Logic # non-inc # inc # total

QF_SLIA 67,584 - 67,584

QF_FP 40,318 2 40,320

QF_NIA 23,876 10 23,886

AUFLIRA 20,011 - 20,011

QF_ABVFP 18,093 69 18,162

QF_BVFP 17,231 182 17,413

QF_ABV 15,084 1,272 16,356

UFNIA 13,509 - 13,509

QF_NRA 11,489 - 11,489

UFLIA 10,137 - 10,137

QF_UF 7,457 766 8,223

QF_DT 8,000 - 8,000

UF 7,668 - 7,668

QF_LIA 6,947 69 7,016

BV 5,846 18 5,864

UFDT 4,527 - 4,527

NRA 3,813 - 3,813

QF_UFBV 1,234 2,330 3,564

AUFLIA 3,276 - 3,276

FP 2,484 - 2,484

LRA 2,419 5 2,424

QF_S 2,319 - 2,319

QF_IDL 2,193 - 2,193

UFLRA 15 1,870 1,885

AUFBVDTLIA 1,708 - 1,708

QF_LRA 1,648 10 1,658

AUFNIRA 1,480 165 1,645

QF_AUFLIA 1,303 72 1,375

Logic # non-inc # inc # total

QF_UFLIA 583 773 1,356

QF_UFLRA 1,284 - 1,284

AUFDTLIA 728 - 728

LIA 607 6 613

QF_AX 551 - 551

QF_UFNIA 478 1 479

QF_UFIDL 428 - 428

UFDTLIA 327 - 327

QF_RDL 255 - 255

BVFP 224 10 234

QF_ALIA 126 44 170

QF_BVFPLRA 168 - 168

UFBV 121 - 121

QF_ANIA 95 5 100

QF_AUFBV 56 31 87

UFIDL 68 - 68

ALIA 42 24 66

QF_FPLRA 57 - 57

QF_UFNRA 37 - 37

ABVFP 30 4 34

NIA 20 - 20

QF_AUFNIA 17 - 17

QF_LIRA 7 - 7

AUFNIA 3 - 3

QF_NIRA 3 - 3

UFDTNIA 1 - 1

cvc4regr 176 1,594 1,770

z3test 479 841 1,320

Total 308,640 10,173 318,813

Figure A.1: Formula counts for the respective benchmark sets. Column #non-inc
refers to the count of non-incremental SMT-LIB files, column #inc
refers to the count of incremental SMT-LIB files. z3test and cvc4regr
refer to CVC4’s and Z3’s respective regression test suites.

bibliography 173

a.3 weakening and strengthening/janus

Lemma 6.3.1. Let φ be a formula with a subformula F. For any G weaker than F,
we have:

if F positive in φ then ∀x1, . . . , xn : φ→ φ[F 7→ G]

if F negative in φ then ∀x1, . . . , xn : φ[F 7→ G]→ φ

with the set of free variables FV(φ) = x1, . . . , xn.

Proof. By induction over φ. For every case, we only consider F being positive
in φ as the negative cases are symmetric.

Case φ = F: direct.

Case φ = ¬φ1: Let x1, . . . , xn = FV(φ) = FV(φ1). Say parity(F, φ) = 1,
then parity(F, φ1) = −1 and by induction hypothesis for φ1:

∀x1, . . . , xn : φ1[F 7→ G]→ φ1

By contraposition, we obtain the opposite implication for φ.

Case φ = φ1 ∧ φ2: Let x1, . . . , xn = FV(φ). Without loss of generality, as-
sume F is a subformula of φ1 and FV(φ1) = x1, . . . , xk with k ≤ n. Consider
parity(F, φ) = 1, then parity(F, φ1) = 1 and by induction hypothesis for φ1:

∀x1, . . . , xk : φ1 → φ1[F 7→ G]

Since xk+1, . . . , xn ̸∈ FV(φ1) this extends to:

∀x1, . . . , xn : φ1 ∧ φ2 → (φ1 ∧ φ2)[F 7→ G]

Note that because F is a subtree of the abstract syntax tree of φ1 the
substitution [F 7→ G] has no effect when applied to φ2.

Case φ = ∃x : φ1: Assume parity(F, φ) = 1, then parity(F, φ1) = 1 and by
induction hypothesis for φ1:

∀x1, . . . , xn : φ1 → φ1[F 7→ G]

where x1, . . . , xn = FV(φ1). If x does not occur free in φ1, then FV(φ) =
FV(φ1) and we can directly conclude the same implication for φ. Otherwise
x ∈ FV(φ1) and without loss of generality x = xn. Then the induction
hypothesis implies:

174 bibliography

∀x1, . . . , xn−1 : (∃xn : φ1)→ (∃xn : φ1[F 7→ G])

⇐⇒∀x1, . . . , xn−1 : (∃xn : φ1)→ ((∃xn : φ1)[F 7→ G])

Since FV(φ) = FV(φ1)− {x}, concluding the proof.

a.4 grammar-based enumeration/et

Number of solved formulas (bar plots)

(a) T=0.03125 (b) T=0.0625

(c) T=0.125 (d) T=0.25

bibliography 175

(a) T=0.5 (b) T=1.0

(c) T=2.0 (d) T=4.0

(e) T=8.0

176 bibliography

Number of solved formulas (line plots)

(a) T=0.03125 (b) T=0.0625

(c) T=0.125 (d) T=0.25

(e) T=0.5 (f) T=1.0

bibliography 177

(a) T=2.0 (b) T=4.0

(c) T=8.0

C U R R I C U L U M V I TA E

personal data

Name Dominik Winterer

Date of Birth August 28, 1991

Place of Birth Villingen-Schwenningen, Germany

Citizen of Germany

education

2019–2024 Ph.D. in Computer Science
ETH Zurich
Zürich, Switzerland

2015– 2018 MSc. Computer Science
Albert-Ludwigs-Universität Freiburg, Germany
Freiburg im Breisgau, Germany

2011– 2015 BSc. Computer Science
Albert-Ludwigs-Universität Freiburg, Germany
Freiburg im Breisgau, Germany

179

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	Introduction
	Main Contributions
	Impact
	Chapter Previews
	Semantic Fusion
	Type-Aware Operator Mutation
	Generative Type-Aware Mutation
	Weakening and Strengthening/Janus
	Grammar-based Enumeration/ET

	Background
	Satisfiability Modulo Theories
	SMT-LIB Initiative, Language, and Benchmarks
	Applications in Academia and Industry

	Automated Software Testing
	Test Generation and Oracle Problem
	Bug Types in SMT Solvers
	Bug detection, Deduplication, and Reduction

	Semantic Fusion
	Illustrative Examples
	Semantic Fusion
	Sat Fusion
	Unsat Fusion
	Mixed Fusion

	Fusion and Inversion Functions
	The YinYang tool
	Empirical Evaluation
	Evaluation Setup
	Quantitative Evaluation

	Selected Bugs
	Discussion
	Related Work

	Type-Aware Operator Mutation
	Motivation
	Illustrative Examples
	Type-Aware Operator Mutation
	Empirical Evaluation
	Evaluation Setup
	Evaluation Results

	In-depth Bug Analysis
	Quantitative Analysis
	Insights
	Selected Bug Samples

	Related Work

	Generative Type-Aware Mutation
	Motivation
	Illustrative Example
	Generative Type-Aware Mutation
	Relationships to FuzzChick and Operator Mutation
	TypeFuzz

	Empirical Evaluation
	Selected Bug Samples
	Limitations & Data-Driven Type-Aware Mutation
	Related Work

	Weakening and Strengthening/Janus
	Motivation
	Problem Statement
	The Janus Framework for Finding Incompleteness Bugs
	Approach Overview
	Weakening & Strengthening

	Evaluation
	Selected Bug Samples
	Related Work

	Grammar-based Enumeration/ET
	Motivation
	Illustrative Example
	Grammar-based Enumeration
	Empirical Evaluation
	Discussion
	Related Work

	Conclusion and Outlook
	Summary
	Impact
	Outlook

	Bibliography
	Appendix
	Semantic Fusion
	Type-Aware Operator Mutation
	Weakening and Strengthening/Janus
	Grammar-based Enumeration/ET
	Curriculum Vitae

